Can texture features computed from the joint intensity distribution of different MRI sequences accurately predict prostate cancer grade?

V. Stavrinides, L. C. Echeverria, H. Whitaker
{"title":"Can texture features computed from the joint intensity distribution of different MRI sequences accurately predict prostate cancer grade?","authors":"V. Stavrinides, L. C. Echeverria, H. Whitaker","doi":"10.21037/JMAI.2018.11.01","DOIUrl":null,"url":null,"abstract":"The diagnostic landscape of prostate cancer has evolved rapidly, from prostate-specific antigen (PSA) testing to exciting new technologies that allow visualization of the disease, moving away from random sampling to targeted biopsies. Multiparametric magnetic resonance imaging (mpMRI) is a new modality that combines T2-weighted (T2W), diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) sequences, each designed to reveal specific microstructural features typically associated with malignancy such as increased vascularity and cellularity.","PeriodicalId":73815,"journal":{"name":"Journal of medical artificial intelligence","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of medical artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21037/JMAI.2018.11.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The diagnostic landscape of prostate cancer has evolved rapidly, from prostate-specific antigen (PSA) testing to exciting new technologies that allow visualization of the disease, moving away from random sampling to targeted biopsies. Multiparametric magnetic resonance imaging (mpMRI) is a new modality that combines T2-weighted (T2W), diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) sequences, each designed to reveal specific microstructural features typically associated with malignancy such as increased vascularity and cellularity.
根据不同MRI序列的关节强度分布计算的纹理特征能否准确预测前列腺癌症分级?
从前列腺特异性抗原(PSA)检测到允许疾病可视化的令人兴奋的新技术,从随机采样到靶向活检,癌症的诊断格局已经迅速发展。多参数磁共振成像(mpMRI)是一种新的模式,它结合了T2加权(T2W)、扩散加权(DW)和动态对比增强(DCE)序列,每种序列都旨在揭示通常与恶性肿瘤相关的特定微观结构特征,如血管和细胞增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信