{"title":"Systematic design strategy for DPL-based ternary logic circuit","authors":"A. Saha, N. Singh","doi":"10.1504/ijnp.2020.105997","DOIUrl":null,"url":null,"abstract":"This work proposes novel strategy to design 2-input ternary (base-3) logic circuits using double pass-transistor logic (DPL). The concept has been explored with respect to 2-input TXOR gate. The circuit diagram of proposed DPL-based TXOR, TAND and TOR logic gate is presented. The proposed T-Cells are designed and optimised using BSIM3 device model with 1.8 V supply rail and at 25°C temperature on TSMC 0.18 µm CMOS technology. The transient response from T-Spice simulatio is validated and the speed-power performance is recorded. Next, the 2:9 ternary decoder based on proposed idea has been explained. The decoder circuit is also designed with 1.8 V supply rail at 25°C temperature on TSMC 0.18 µm CMOS technology. The trit value '0', '1' and '2' are represented with 0 V, 0.9 V and 1.8 V respectively. As per simulation result the proposed 2:9 ternary decoder dissipates 383.57 µW average power and takes 64.87 ps to generate final output.","PeriodicalId":14016,"journal":{"name":"International Journal of Nanoparticles","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/ijnp.2020.105997","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanoparticles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijnp.2020.105997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 5
Abstract
This work proposes novel strategy to design 2-input ternary (base-3) logic circuits using double pass-transistor logic (DPL). The concept has been explored with respect to 2-input TXOR gate. The circuit diagram of proposed DPL-based TXOR, TAND and TOR logic gate is presented. The proposed T-Cells are designed and optimised using BSIM3 device model with 1.8 V supply rail and at 25°C temperature on TSMC 0.18 µm CMOS technology. The transient response from T-Spice simulatio is validated and the speed-power performance is recorded. Next, the 2:9 ternary decoder based on proposed idea has been explained. The decoder circuit is also designed with 1.8 V supply rail at 25°C temperature on TSMC 0.18 µm CMOS technology. The trit value '0', '1' and '2' are represented with 0 V, 0.9 V and 1.8 V respectively. As per simulation result the proposed 2:9 ternary decoder dissipates 383.57 µW average power and takes 64.87 ps to generate final output.