{"title":"Cloud DEVS-based computation of UAVs trajectories for search and rescue missions","authors":"J. Bordón-Ruiz, E. Besada-Portas, J. Orozco","doi":"10.1080/17477778.2022.2053311","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper presents a new Cloud-deployable DEVS-based framework for optimising UAV trajectories and sensor strategies in target-search missions. DEVS provides it with a well-established, flexible, and verifiable modelling strategy to include different models for the UAV, sensor, and target dynamics; the target and sensor uncertainty; and the optimising process. Its Cloud deployability speeds up the evaluations/simulations required to optimise this NP-hard problem, which involves computationally heavy models when solving real-world missions. The framework, designed to handle different types of target-search missions, currently optimises, using a multi-objective Genetic Algorithm, free-shape trajectories of multiple UAVs,eqquiped with several static/movable sensors to detect a target within a search area. It is implemented in xDEVS and deployable over a set of containers in the Google Cloud Platform. The results show that our deployment policy speeds up the computation up to 3.35 times, letting the operator simultaneously optimise several search strategies for agiven scenario.","PeriodicalId":51296,"journal":{"name":"Journal of Simulation","volume":"16 1","pages":"572 - 588"},"PeriodicalIF":1.3000,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17477778.2022.2053311","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2
Abstract
ABSTRACT This paper presents a new Cloud-deployable DEVS-based framework for optimising UAV trajectories and sensor strategies in target-search missions. DEVS provides it with a well-established, flexible, and verifiable modelling strategy to include different models for the UAV, sensor, and target dynamics; the target and sensor uncertainty; and the optimising process. Its Cloud deployability speeds up the evaluations/simulations required to optimise this NP-hard problem, which involves computationally heavy models when solving real-world missions. The framework, designed to handle different types of target-search missions, currently optimises, using a multi-objective Genetic Algorithm, free-shape trajectories of multiple UAVs,eqquiped with several static/movable sensors to detect a target within a search area. It is implemented in xDEVS and deployable over a set of containers in the Google Cloud Platform. The results show that our deployment policy speeds up the computation up to 3.35 times, letting the operator simultaneously optimise several search strategies for agiven scenario.
Journal of SimulationCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-OPERATIONS RESEARCH & MANAGEMENT SCIENCE
CiteScore
5.70
自引率
16.00%
发文量
42
期刊介绍:
Journal of Simulation (JOS) aims to publish both articles and technical notes from researchers and practitioners active in the field of simulation. In JOS, the field of simulation includes the techniques, tools, methods and technologies of the application and the use of discrete-event simulation, agent-based modelling and system dynamics.