Squared distance matrices of trees with matrix weights

IF 1 4区 数学 Q1 MATHEMATICS
Iswar Mahato, M. Kannan
{"title":"Squared distance matrices of trees with matrix weights","authors":"Iswar Mahato, M. Kannan","doi":"10.1080/09728600.2023.2236172","DOIUrl":null,"url":null,"abstract":"Let $T$ be a tree on $n$ vertices whose edge weights are positive definite matrices of order $s$. The squared distance matrix of $T$, denoted by $\\Delta$, is the $ns \\times ns$ block matrix with $\\Delta_{ij}=d(i,j)^2$, where $d(i,j)$ is the sum of the weights of the edges in the unique $(i,j)$-path. In this article, we obtain a formula for the determinant of $\\Delta$ and find ${\\Delta}^{-1}$ under some conditions.","PeriodicalId":48497,"journal":{"name":"AKCE International Journal of Graphs and Combinatorics","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AKCE International Journal of Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/09728600.2023.2236172","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Let $T$ be a tree on $n$ vertices whose edge weights are positive definite matrices of order $s$. The squared distance matrix of $T$, denoted by $\Delta$, is the $ns \times ns$ block matrix with $\Delta_{ij}=d(i,j)^2$, where $d(i,j)$ is the sum of the weights of the edges in the unique $(i,j)$-path. In this article, we obtain a formula for the determinant of $\Delta$ and find ${\Delta}^{-1}$ under some conditions.
具有矩阵权重的树的距离矩阵的平方
设$T$是一棵有$n$个顶点的树,其边权为$s阶的正定矩阵。$T$的距离平方矩阵,用$\Delta$表示,是$ns \乘以ns$块矩阵,其中$\Delta_{ij}=d(i,j)^2$,其中$d(i,j)$是唯一$(i,j)$-path中所有边的权值之和。在本文中,我们得到了$\Delta$行列式的一个公式,并在某些条件下求出${\Delta}^{-1}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
40
审稿时长
28 weeks
期刊介绍: AKCE International Journal of Graphs and Combinatorics is devoted to publication of standard original research papers in Combinatorial Mathematics and related areas. The fields covered by the journal include: Graphs and hypergraphs, Network theory, Combinatorial optimization, Coding theory, Block designs, Combinatorial geometry, Matroid theory, Logic, Computing, Neural networks and any related topics. Each volume will consist of three issues to be published in the months of April, August and December every year. Contribution presented to the journal can be Full-length article, Review article, Short communication and about a conference. The journal will also publish proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standard of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信