Time-periodic linear boundary value problems on a finite interval

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
A. S. Fokas, B. Pelloni, D. Smith
{"title":"Time-periodic linear boundary value problems on a finite interval","authors":"A. S. Fokas, B. Pelloni, D. Smith","doi":"10.1090/qam/1615","DOIUrl":null,"url":null,"abstract":"We study the large time behaviour of the solution of a linear dispersive PDEs posed on a finite interval, when the prescribed boundary conditions are time periodic. We use the approach pioneered in [7] for nonlinear integrable PDEs. and then applied to linear problems on the half-line in [6], to characterise necessary conditions for the solution of such a problem to be periodic, at least in an asymptotic sense. We then fully describe the periodicity properties of the solution in three important illustrative examples, recovering known results for the second-order cases and establishing new ones for the third order one.","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/qam/1615","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

Abstract

We study the large time behaviour of the solution of a linear dispersive PDEs posed on a finite interval, when the prescribed boundary conditions are time periodic. We use the approach pioneered in [7] for nonlinear integrable PDEs. and then applied to linear problems on the half-line in [6], to characterise necessary conditions for the solution of such a problem to be periodic, at least in an asymptotic sense. We then fully describe the periodicity properties of the solution in three important illustrative examples, recovering known results for the second-order cases and establishing new ones for the third order one.
有限区间上的时间周期线性边值问题
当规定的边界条件是时间周期性的时,我们研究了有限区间上线性色散偏微分方程解的大时间行为。对于非线性可积偏微分方程,我们使用[7]中开创的方法。然后应用于[6]中半线上的线性问题,至少在渐近意义上,刻画这种问题的解是周期性的必要条件。然后,我们在三个重要的示例中充分描述了解的周期性性质,恢复了二阶情况的已知结果,并建立了三阶情况的新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quarterly of Applied Mathematics
Quarterly of Applied Mathematics 数学-应用数学
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Quarterly of Applied Mathematics contains original papers in applied mathematics which have a close connection with applications. An author index appears in the last issue of each volume. This journal, published quarterly by Brown University with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信