Evaluation of hyperparameters in CNN for detecting patterns in images

Robinson Jimenez Moreno, Oscar Avilés, D. Ovalle
{"title":"Evaluation of hyperparameters in CNN for detecting patterns in images","authors":"Robinson Jimenez Moreno, Oscar Avilés, D. Ovalle","doi":"10.14483/22484728.14618","DOIUrl":null,"url":null,"abstract":"Deep learning techniques have emerged as an effective solution to the problems of current pattern recognition techniques, such as neural networks. Within these new techniques, the convolutional neural networks (CNN) offer an integration to the recognition of patterns in images, given by the traditional set of images processing plus neuronal networks. This article presents the analysis of the different hyper parameters that imply the training of a CNN, which allows to validate the effects on the accuracy of the network. It is used as a base the recognition of electric energy meters, obtaining a network with an accuracy of 96.32 %.","PeriodicalId":34191,"journal":{"name":"Vision Electronica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision Electronica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14483/22484728.14618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning techniques have emerged as an effective solution to the problems of current pattern recognition techniques, such as neural networks. Within these new techniques, the convolutional neural networks (CNN) offer an integration to the recognition of patterns in images, given by the traditional set of images processing plus neuronal networks. This article presents the analysis of the different hyper parameters that imply the training of a CNN, which allows to validate the effects on the accuracy of the network. It is used as a base the recognition of electric energy meters, obtaining a network with an accuracy of 96.32 %.
用于检测图像模式的CNN超参数评估
深度学习技术已经成为解决当前模式识别技术(如神经网络)问题的有效方法。在这些新技术中,卷积神经网络(CNN)提供了对图像中模式识别的集成,这是由传统的图像处理和神经元网络组成的。本文对暗示CNN训练的不同超参数进行了分析,从而验证了对网络准确性的影响。将其作为电能表识别的基础,得到准确率为96.32%的网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信