Construction of a regularized asymptotic solution of an integro-differential equation with a rapidly oscillating cosine

IF 2 Q1 MATHEMATICS
A. Bobodzhanov, B. Kalimbetov, N. Pardaeva
{"title":"Construction of a regularized asymptotic solution of an integro-differential equation with a rapidly oscillating cosine","authors":"A. Bobodzhanov, B. Kalimbetov, N. Pardaeva","doi":"10.22436/jmcs.032.01.07","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a singularly perturbed integro-differential equation with a rapidly oscillating right-hand side, which includes an integral operator with a slowly varying kernel. Earlier, singularly perturbed differential and integro-differential equations with rapidly oscillating coefficients were considered. The main goal of this work is to generalize the Lomov's regularization method and to identify the rapidly oscillating right-hand side to the asymptotics of the solution to the original problem.","PeriodicalId":45497,"journal":{"name":"Journal of Mathematics and Computer Science-JMCS","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Computer Science-JMCS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22436/jmcs.032.01.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider a singularly perturbed integro-differential equation with a rapidly oscillating right-hand side, which includes an integral operator with a slowly varying kernel. Earlier, singularly perturbed differential and integro-differential equations with rapidly oscillating coefficients were considered. The main goal of this work is to generalize the Lomov's regularization method and to identify the rapidly oscillating right-hand side to the asymptotics of the solution to the original problem.
具有快速振荡余弦的积分微分方程正则化渐近解的构造
在本文中,我们考虑了一个具有快速振荡右手边的奇摄动积分微分方程,该方程包括一个具有慢变核的积分算子。早先,考虑了具有快速振荡系数的奇摄动微分方程和积分微分方程。这项工作的主要目标是推广Lomov正则化方法,并识别原始问题解的渐近性的快速振荡右手边。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
4.00%
发文量
77
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信