The strong homotopy structure of Poisson reduction

IF 0.7 2区 数学 Q2 MATHEMATICS
C. Esposito, Andreas Kraft, Jonas Schnitzer
{"title":"The strong homotopy structure of Poisson reduction","authors":"C. Esposito, Andreas Kraft, Jonas Schnitzer","doi":"10.4171/jncg/455","DOIUrl":null,"url":null,"abstract":"In this paper we propose a reduction scheme for multivector fields phrased in terms of $L_\\infty$-morphisms. Using well-know geometric properties of the reduced manifolds we perform a Taylor expansion of multivector fields, which allows us to built up a suitable deformation retract of DGLA's. We first obtained an explicit formula for the $L_\\infty$-Projection and -Inclusion of generic DGLA retracts. We then applied this formula to the deformation retract that we constructed in the case of multivector fields on reduced manifolds. This allows us to obtain the desired reduction $L_\\infty$-morphism. Finally, we perfom a comparison with other reduction procedures.","PeriodicalId":54780,"journal":{"name":"Journal of Noncommutative Geometry","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Noncommutative Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jncg/455","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper we propose a reduction scheme for multivector fields phrased in terms of $L_\infty$-morphisms. Using well-know geometric properties of the reduced manifolds we perform a Taylor expansion of multivector fields, which allows us to built up a suitable deformation retract of DGLA's. We first obtained an explicit formula for the $L_\infty$-Projection and -Inclusion of generic DGLA retracts. We then applied this formula to the deformation retract that we constructed in the case of multivector fields on reduced manifolds. This allows us to obtain the desired reduction $L_\infty$-morphism. Finally, we perfom a comparison with other reduction procedures.
Poisson约简的强同宗结构
本文提出了用$L_infty$-态射表示的多向量场的一个约简方案。利用归约流形的众所周知的几何性质,我们对多向量场进行了泰勒展开,这使我们能够建立DGLA的适当变形收缩。我们首先得到了广义DGLA收缩的$L_\infty$-投影和-包含的一个显式公式。然后,我们将这个公式应用于我们在约化流形上的多向量场的情况下构造的变形回缩。这使我们能够获得期望的归约$L_\infty$-态射。最后,我们与其他还原程序进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
11.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: The Journal of Noncommutative Geometry covers the noncommutative world in all its aspects. It is devoted to publication of research articles which represent major advances in the area of noncommutative geometry and its applications to other fields of mathematics and theoretical physics. Topics covered include in particular: Hochschild and cyclic cohomology K-theory and index theory Measure theory and topology of noncommutative spaces, operator algebras Spectral geometry of noncommutative spaces Noncommutative algebraic geometry Hopf algebras and quantum groups Foliations, groupoids, stacks, gerbes Deformations and quantization Noncommutative spaces in number theory and arithmetic geometry Noncommutative geometry in physics: QFT, renormalization, gauge theory, string theory, gravity, mirror symmetry, solid state physics, statistical mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信