{"title":"The strong homotopy structure of Poisson reduction","authors":"C. Esposito, Andreas Kraft, Jonas Schnitzer","doi":"10.4171/jncg/455","DOIUrl":null,"url":null,"abstract":"In this paper we propose a reduction scheme for multivector fields phrased in terms of $L_\\infty$-morphisms. Using well-know geometric properties of the reduced manifolds we perform a Taylor expansion of multivector fields, which allows us to built up a suitable deformation retract of DGLA's. We first obtained an explicit formula for the $L_\\infty$-Projection and -Inclusion of generic DGLA retracts. We then applied this formula to the deformation retract that we constructed in the case of multivector fields on reduced manifolds. This allows us to obtain the desired reduction $L_\\infty$-morphism. Finally, we perfom a comparison with other reduction procedures.","PeriodicalId":54780,"journal":{"name":"Journal of Noncommutative Geometry","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Noncommutative Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jncg/455","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper we propose a reduction scheme for multivector fields phrased in terms of $L_\infty$-morphisms. Using well-know geometric properties of the reduced manifolds we perform a Taylor expansion of multivector fields, which allows us to built up a suitable deformation retract of DGLA's. We first obtained an explicit formula for the $L_\infty$-Projection and -Inclusion of generic DGLA retracts. We then applied this formula to the deformation retract that we constructed in the case of multivector fields on reduced manifolds. This allows us to obtain the desired reduction $L_\infty$-morphism. Finally, we perfom a comparison with other reduction procedures.
期刊介绍:
The Journal of Noncommutative Geometry covers the noncommutative world in all its aspects. It is devoted to publication of research articles which represent major advances in the area of noncommutative geometry and its applications to other fields of mathematics and theoretical physics. Topics covered include in particular:
Hochschild and cyclic cohomology
K-theory and index theory
Measure theory and topology of noncommutative spaces, operator algebras
Spectral geometry of noncommutative spaces
Noncommutative algebraic geometry
Hopf algebras and quantum groups
Foliations, groupoids, stacks, gerbes
Deformations and quantization
Noncommutative spaces in number theory and arithmetic geometry
Noncommutative geometry in physics: QFT, renormalization, gauge theory, string theory, gravity, mirror symmetry, solid state physics, statistical mechanics.