The Era of Plant Breeding: Conventional Breeding to Genomics-assisted Breeding for Crop Improvement.

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Thumadath Palayullaparambil Ajeesh Krishna, Duraipandiyan Veeramuthu, Theivanayagam Maharajan, Mariapackiam Soosaimanickam
{"title":"The Era of Plant Breeding: Conventional Breeding to Genomics-assisted Breeding for Crop Improvement.","authors":"Thumadath Palayullaparambil Ajeesh Krishna, Duraipandiyan Veeramuthu, Theivanayagam Maharajan, Mariapackiam Soosaimanickam","doi":"10.2174/1389202924666230517115912","DOIUrl":null,"url":null,"abstract":"<p><p>Plant breeding has made a significant contribution to increasing agricultural production. Conventional breeding based on phenotypic selection is not effective for crop improvement. Because phenotype is considerably influenced by environmental factors, which will affect the selection of breeding materials for crop improvement. The past two decades have seen tremendous progress in plant breeding research. Especially the availability of high-throughput molecular markers followed by genomic-assisted approaches significantly contributed to advancing plant breeding. Integration of speed breeding with genomic and phenomic facilities allowed rapid quantitative trait loci (QTL)/gene identifications and ultimately accelerated crop improvement programs. The advances in sequencing technology helps to understand the genome organization of many crops and helped with genomic selection in crop breeding. Plant breeding has gradually changed from phenotype-to-genotype-based to genotype-to-phenotype-based selection. High-throughput phenomic platforms have played a significant role in the modern breeding program and are considered an essential part of precision breeding. In this review, we discuss the rapid advance in plant breeding technology for efficient crop improvements and provide details on various approaches/platforms that are helpful for crop improvement. This review will help researchers understand the recent developments in crop breeding and improvements.</p>","PeriodicalId":10803,"journal":{"name":"Current Genomics","volume":"1 1","pages":"24-35"},"PeriodicalIF":1.8000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10334699/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/1389202924666230517115912","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plant breeding has made a significant contribution to increasing agricultural production. Conventional breeding based on phenotypic selection is not effective for crop improvement. Because phenotype is considerably influenced by environmental factors, which will affect the selection of breeding materials for crop improvement. The past two decades have seen tremendous progress in plant breeding research. Especially the availability of high-throughput molecular markers followed by genomic-assisted approaches significantly contributed to advancing plant breeding. Integration of speed breeding with genomic and phenomic facilities allowed rapid quantitative trait loci (QTL)/gene identifications and ultimately accelerated crop improvement programs. The advances in sequencing technology helps to understand the genome organization of many crops and helped with genomic selection in crop breeding. Plant breeding has gradually changed from phenotype-to-genotype-based to genotype-to-phenotype-based selection. High-throughput phenomic platforms have played a significant role in the modern breeding program and are considered an essential part of precision breeding. In this review, we discuss the rapid advance in plant breeding technology for efficient crop improvements and provide details on various approaches/platforms that are helpful for crop improvement. This review will help researchers understand the recent developments in crop breeding and improvements.

植物育种的时代:传统育种到基因组学辅助育种的作物改良
植物育种对提高农业产量作出了重大贡献。基于表型选择的常规育种对作物改良无效。因为表型在很大程度上受到环境因素的影响,环境因素会影响作物改良育种材料的选择。在过去的二十年里,植物育种研究取得了巨大进展。特别是高通量分子标记的可用性,以及基因组辅助方法,对推进植物育种做出了重大贡献。将快速育种与基因组和表型设施相结合,可以快速鉴定数量性状基因座(QTL)/基因,并最终加快作物改良计划。测序技术的进步有助于了解许多作物的基因组组织,并有助于作物育种中的基因组选择。植物育种逐渐从表型到基因型,从基因型到表型选择。高通量表型平台在现代育种计划中发挥了重要作用,被认为是精确育种的重要组成部分。在这篇综述中,我们讨论了高效作物改良的植物育种技术的快速发展,并提供了有助于作物改良的各种方法/平台的详细信息。这篇综述将帮助研究人员了解作物育种和改良的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Genomics
Current Genomics 生物-生化与分子生物学
CiteScore
5.20
自引率
0.00%
发文量
29
审稿时长
>0 weeks
期刊介绍: Current Genomics is a peer-reviewed journal that provides essential reading about the latest and most important developments in genome science and related fields of research. Systems biology, systems modeling, machine learning, network inference, bioinformatics, computational biology, epigenetics, single cell genomics, extracellular vesicles, quantitative biology, and synthetic biology for the study of evolution, development, maintenance, aging and that of human health, human diseases, clinical genomics and precision medicine are topics of particular interest. The journal covers plant genomics. The journal will not consider articles dealing with breeding and livestock. Current Genomics publishes three types of articles including: i) Research papers from internationally-recognized experts reporting on new and original data generated at the genome scale level. Position papers dealing with new or challenging methodological approaches, whether experimental or mathematical, are greatly welcome in this section. ii) Authoritative and comprehensive full-length or mini reviews from widely recognized experts, covering the latest developments in genome science and related fields of research such as systems biology, statistics and machine learning, quantitative biology, and precision medicine. Proposals for mini-hot topics (2-3 review papers) and full hot topics (6-8 review papers) guest edited by internationally-recognized experts are welcome in this section. Hot topic proposals should not contain original data and they should contain articles originating from at least 2 different countries. iii) Opinion papers from internationally recognized experts addressing contemporary questions and issues in the field of genome science and systems biology and basic and clinical research practices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信