Building flexible regression models: including the Birnbaum-Saunders distribution in the gamlss package

Fernanda V. Roquim, T. Ramires, L. R. Nakamura, A. Righetto, R. R. Lima, Rayne A. Gomes
{"title":"Building flexible regression models: including the Birnbaum-Saunders distribution in the gamlss package","authors":"Fernanda V. Roquim, T. Ramires, L. R. Nakamura, A. Righetto, R. R. Lima, Rayne A. Gomes","doi":"10.5433/1679-0375.2021v42n2p163","DOIUrl":null,"url":null,"abstract":"Generalized additive models for location, scale and shape (GAMLSS) are a very flexible statistical modeling framework, being an important generalization of the well-known generalized linear models and generalized additive models. Their main advantage is that any probability distribution (that does not necessarily belong to the exponential family) can be considered to model the response variable and different regression structures can be fitted in each of its parameters. Currently, there are more than 100 distributions that are already implemented in the gamlss package in R software. Nevertheless, researchers can implement different distributions if they are not yet available, e.g., the Birnbaum-Saunders (BS) distribution, which is widely used in fatigue studies. In this paper we make available all codes regarding the inclusion of the BS distribution in the gamlss package, and then present a simple application related to air quality data for illustration purposes","PeriodicalId":30173,"journal":{"name":"Semina Ciencias Exatas e Tecnologicas","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semina Ciencias Exatas e Tecnologicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5433/1679-0375.2021v42n2p163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Generalized additive models for location, scale and shape (GAMLSS) are a very flexible statistical modeling framework, being an important generalization of the well-known generalized linear models and generalized additive models. Their main advantage is that any probability distribution (that does not necessarily belong to the exponential family) can be considered to model the response variable and different regression structures can be fitted in each of its parameters. Currently, there are more than 100 distributions that are already implemented in the gamlss package in R software. Nevertheless, researchers can implement different distributions if they are not yet available, e.g., the Birnbaum-Saunders (BS) distribution, which is widely used in fatigue studies. In this paper we make available all codes regarding the inclusion of the BS distribution in the gamlss package, and then present a simple application related to air quality data for illustration purposes
构建灵活的回归模型:包括在gamlss包中的Birnbaum-Saunders分布
位置、尺度和形状的广义可加性模型(GAMLSS)是一个非常灵活的统计建模框架,是著名的广义线性模型和广义可加模型的重要推广。它们的主要优点是,可以考虑任何概率分布(不一定属于指数族)来对响应变量进行建模,并且可以在每个参数中拟合不同的回归结构。目前,有100多个发行版已经在R软件的gamlss包中实现。然而,如果还没有不同的分布,研究人员可以实现它们,例如,在疲劳研究中广泛使用的Birnbaum-Saunders(BS)分布。在本文中,我们提供了关于在gamlss包中包含BS分布的所有代码,然后提出了一个与空气质量数据相关的简单应用程序,以便于说明
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
12
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信