Canal surface whose center curve is a hyperbolic curve with hyperbolic frame

IF 0.8 Q4 MATHEMATICS
A. Uçum
{"title":"Canal surface whose center curve is a hyperbolic curve with hyperbolic frame","authors":"A. Uçum","doi":"10.36890/IEJG.829766","DOIUrl":null,"url":null,"abstract":"In this paper, we obtain the parametrization of the canal surfaces whose center curves are the hyperbolic curves on the hyperbolic space H 2 in E 31 . The parametrization of the canal surface is expressed according to the hyperbolic frame given in [10]. Then, the parallel surface of this surface is studied. Also, we define the notion of the associated canal surface. Lastly, we give the geometric properties of these surfaces such that Weingarten surface, ( X, Y ) -Weingarten surface and linear Weingarten surface.","PeriodicalId":43768,"journal":{"name":"International Electronic Journal of Geometry","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36890/IEJG.829766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we obtain the parametrization of the canal surfaces whose center curves are the hyperbolic curves on the hyperbolic space H 2 in E 31 . The parametrization of the canal surface is expressed according to the hyperbolic frame given in [10]. Then, the parallel surface of this surface is studied. Also, we define the notion of the associated canal surface. Lastly, we give the geometric properties of these surfaces such that Weingarten surface, ( X, Y ) -Weingarten surface and linear Weingarten surface.
中心曲线为双曲框架双曲曲线的运河曲面
本文在E31中的双曲空间H2上,得到了中心曲线为双曲曲线的渠道曲面的参数化。渠道表面的参数化根据[10]中给出的双曲框架表示。然后,对该曲面的平行曲面进行了研究。此外,我们定义了相关运河表面的概念。最后给出了这些曲面的几何性质,如Weingarten曲面、(X,Y)-Wingarten曲面和线性Weingarter曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
14.30%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信