Saturation of finitely-generated submodules of free modules over Prüfer domains

IF 0.5 Q3 MATHEMATICS
I. Yengui, Faten Ben Amor
{"title":"Saturation of finitely-generated submodules of free modules over Prüfer domains","authors":"I. Yengui, Faten Ben Amor","doi":"10.52737/18291163-2021.13.1-1-21","DOIUrl":null,"url":null,"abstract":"We propose to give an algorithm for computing the R-saturation of a finitely-generated submodule of a free module E over a Prüfer domain R. To do this, we start with the local case, that is, the case where R is a valuation domain. After that, we consider the global case (R is a Prüfer domain) using the dynamical method. The proposed algorithm is based on an algorithm given by Ducos, Monceur and Yengui in the case E=R[X]m which is reformulated here in a more general setting in order to reach a wider audience. The last section is devoted to the case where R is a Bézout domain. Particular attention is paid to the case where R is a principal ideal domain (Z as the main example).","PeriodicalId":42323,"journal":{"name":"Armenian Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Armenian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52737/18291163-2021.13.1-1-21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We propose to give an algorithm for computing the R-saturation of a finitely-generated submodule of a free module E over a Prüfer domain R. To do this, we start with the local case, that is, the case where R is a valuation domain. After that, we consider the global case (R is a Prüfer domain) using the dynamical method. The proposed algorithm is based on an algorithm given by Ducos, Monceur and Yengui in the case E=R[X]m which is reformulated here in a more general setting in order to reach a wider audience. The last section is devoted to the case where R is a Bézout domain. Particular attention is paid to the case where R is a principal ideal domain (Z as the main example).
自由模的有限生成子模在偏好域上的饱和
我们提出了一种计算Prüfer域R上自由模E的有限生成子模的R饱和的算法。为此,我们从局部情况开始,即R是估值域的情况。然后,我们使用动力学方法考虑全局情况(R是Prüfer域)。所提出的算法是基于Ducos、Monceur和Yengui在E=R[X]m的情况下给出的算法,该算法在这里以更通用的设置重新表述,以接触更广泛的受众。最后一节专门讨论R是Bézout域的情况。特别注意R是主理想域(Z是主要例子)的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
13
审稿时长
48 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信