Geometry of Generated Groups with Metrics Induced by Their Cayley Color Graphs

IF 0.9 3区 数学 Q2 MATHEMATICS
T. Suksumran
{"title":"Geometry of Generated Groups with Metrics Induced by Their Cayley Color Graphs","authors":"T. Suksumran","doi":"10.1515/agms-2019-0002","DOIUrl":null,"url":null,"abstract":"Abstract Let G be a group and let S be a generating set of G. In this article,we introduce a metric dC on G with respect to S, called the cardinal metric.We then compare geometric structures of (G, dC) and (G, dW), where dW denotes the word metric. In particular, we prove that if S is finite, then (G, dC) and (G, dW) are not quasiisometric in the case when (G, dW) has infinite diameter and they are bi-Lipschitz equivalent otherwise. We also give an alternative description of cardinal metrics by using Cayley color graphs. It turns out that colorpermuting and color-preserving automorphisms of Cayley digraphs are isometries with respect to cardinal metrics.","PeriodicalId":48637,"journal":{"name":"Analysis and Geometry in Metric Spaces","volume":"7 1","pages":"15 - 21"},"PeriodicalIF":0.9000,"publicationDate":"2018-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/agms-2019-0002","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Geometry in Metric Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2019-0002","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Let G be a group and let S be a generating set of G. In this article,we introduce a metric dC on G with respect to S, called the cardinal metric.We then compare geometric structures of (G, dC) and (G, dW), where dW denotes the word metric. In particular, we prove that if S is finite, then (G, dC) and (G, dW) are not quasiisometric in the case when (G, dW) has infinite diameter and they are bi-Lipschitz equivalent otherwise. We also give an alternative description of cardinal metrics by using Cayley color graphs. It turns out that colorpermuting and color-preserving automorphisms of Cayley digraphs are isometries with respect to cardinal metrics.
由Cayley色图诱导的度量生成群的几何
摘要设G是G的一个群,S是G的一个生成集,本文引入G上关于S的一个度规dC,称为基数度规。然后我们比较(G, dC)和(G, dW)的几何结构,其中dW表示单词度量。特别地,我们证明了如果S是有限的,那么当(G, dW)具有无限直径时(G, dC)和(G, dW)不是准等距的,否则它们是双lipschitz等价的。我们还通过使用凯利彩色图给出了基数度量的另一种描述。证明了Cayley有向图的颜色置换和颜色保持自同构是相对于基数度量的等距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Geometry in Metric Spaces
Analysis and Geometry in Metric Spaces Mathematics-Geometry and Topology
CiteScore
1.80
自引率
0.00%
发文量
8
审稿时长
16 weeks
期刊介绍: Analysis and Geometry in Metric Spaces is an open access electronic journal that publishes cutting-edge research on analytical and geometrical problems in metric spaces and applications. We strive to present a forum where all aspects of these problems can be discussed. AGMS is devoted to the publication of results on these and related topics: Geometric inequalities in metric spaces, Geometric measure theory and variational problems in metric spaces, Analytic and geometric problems in metric measure spaces, probability spaces, and manifolds with density, Analytic and geometric problems in sub-riemannian manifolds, Carnot groups, and pseudo-hermitian manifolds. Geometric control theory, Curvature in metric and length spaces, Geometric group theory, Harmonic Analysis. Potential theory, Mass transportation problems, Quasiconformal and quasiregular mappings. Quasiconformal geometry, PDEs associated to analytic and geometric problems in metric spaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信