Geometry of Generated Groups with Metrics Induced by Their Cayley Color Graphs

Pub Date : 2018-10-20 DOI:10.1515/agms-2019-0002
T. Suksumran
{"title":"Geometry of Generated Groups with Metrics Induced by Their Cayley Color Graphs","authors":"T. Suksumran","doi":"10.1515/agms-2019-0002","DOIUrl":null,"url":null,"abstract":"Abstract Let G be a group and let S be a generating set of G. In this article,we introduce a metric dC on G with respect to S, called the cardinal metric.We then compare geometric structures of (G, dC) and (G, dW), where dW denotes the word metric. In particular, we prove that if S is finite, then (G, dC) and (G, dW) are not quasiisometric in the case when (G, dW) has infinite diameter and they are bi-Lipschitz equivalent otherwise. We also give an alternative description of cardinal metrics by using Cayley color graphs. It turns out that colorpermuting and color-preserving automorphisms of Cayley digraphs are isometries with respect to cardinal metrics.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/agms-2019-0002","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2019-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Let G be a group and let S be a generating set of G. In this article,we introduce a metric dC on G with respect to S, called the cardinal metric.We then compare geometric structures of (G, dC) and (G, dW), where dW denotes the word metric. In particular, we prove that if S is finite, then (G, dC) and (G, dW) are not quasiisometric in the case when (G, dW) has infinite diameter and they are bi-Lipschitz equivalent otherwise. We also give an alternative description of cardinal metrics by using Cayley color graphs. It turns out that colorpermuting and color-preserving automorphisms of Cayley digraphs are isometries with respect to cardinal metrics.
分享
查看原文
由Cayley色图诱导的度量生成群的几何
摘要设G是G的一个群,S是G的一个生成集,本文引入G上关于S的一个度规dC,称为基数度规。然后我们比较(G, dC)和(G, dW)的几何结构,其中dW表示单词度量。特别地,我们证明了如果S是有限的,那么当(G, dW)具有无限直径时(G, dC)和(G, dW)不是准等距的,否则它们是双lipschitz等价的。我们还通过使用凯利彩色图给出了基数度量的另一种描述。证明了Cayley有向图的颜色置换和颜色保持自同构是相对于基数度量的等距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信