{"title":"Joint weighted universality of the Hurwitz zeta-functions","authors":"A. Laurinčikas, G. Vadeikis","doi":"10.1090/spmj/1712","DOIUrl":null,"url":null,"abstract":"<p>Joint weighted universality theorems are proved concerning simultaneous approximation of a collection of analytic functions by a collection of shifts of Hurwitz zeta-functions with parameters <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha 1 comma ellipsis comma alpha Subscript r Baseline\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:mo>…<!-- … --></mml:mo>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mi>r</mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\alpha _1,\\dots ,\\alpha _r</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. For this, linear independence is required over the field of rational numbers for the set <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-brace log left-parenthesis m plus alpha Subscript j Baseline right-parenthesis colon m element-of double-struck upper N 0 equals double-struck upper N union StartSet 0 EndSet comma j equals 1 comma ellipsis comma r right-brace\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:mi>log</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>m</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:msub>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mi>j</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mspace width=\"thinmathspace\" />\n <mml:mo>:</mml:mo>\n <mml:mspace width=\"thinmathspace\" />\n <mml:mi>m</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">N</mml:mi>\n </mml:mrow>\n <mml:mn>0</mml:mn>\n </mml:msub>\n <mml:mo>=</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">N</mml:mi>\n </mml:mrow>\n <mml:mo>∪<!-- ∪ --></mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mspace width=\"thickmathspace\" />\n <mml:mi>j</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mo>…<!-- … --></mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mi>r</mml:mi>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\{\\log (m+\\alpha _j)\\,:\\, m\\in \\mathbb {N}_0=\\mathbb {N}\\cup \\{0\\},\\;j=1,\\dots ,r\\}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1712","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Joint weighted universality theorems are proved concerning simultaneous approximation of a collection of analytic functions by a collection of shifts of Hurwitz zeta-functions with parameters α1,…,αr\alpha _1,\dots ,\alpha _r. For this, linear independence is required over the field of rational numbers for the set {log(m+αj):m∈N0=N∪{0},j=1,…,r}\{\log (m+\alpha _j)\,:\, m\in \mathbb {N}_0=\mathbb {N}\cup \{0\},\;j=1,\dots ,r\}.
期刊介绍:
This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.