Bagged Pretested Portfolio Selection

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ekaterina Kazak, W. Pohlmeier
{"title":"Bagged Pretested Portfolio Selection","authors":"Ekaterina Kazak, W. Pohlmeier","doi":"10.1080/07350015.2022.2110880","DOIUrl":null,"url":null,"abstract":"Abstract This article exploits the idea of combining pretesting and bagging to choose between competing portfolio strategies. We propose an estimator for the portfolio weight vector, which optimally trades off Type I against Type II errors when choosing the best investment strategy. Furthermore, we accommodate the idea of bagging in the portfolio testing problem, which helps to avoid sharp thresholding and reduces turnover costs substantially. Our Bagged Pretested Portfolio Selection (BPPS) approach borrows from both the shrinkage and the forecast combination literature. The portfolio weights of our strategy are weighted averages of the portfolio weights from a set of stand-alone strategies. More specifically, the weights are generated from pseudo-out-of-sample portfolio pretesting, such that they reflect the probability that a given strategy will be overall best performing. The resulting strategy allows for a flexible and smooth switch between the underlying strategies and outperforms the corresponding stand-alone strategies. Besides yielding high point estimates of the portfolio performance measures, the BPPS approach performs exceptionally well in terms of precision and is robust against outliers resulting from the choice of the asset space.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07350015.2022.2110880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This article exploits the idea of combining pretesting and bagging to choose between competing portfolio strategies. We propose an estimator for the portfolio weight vector, which optimally trades off Type I against Type II errors when choosing the best investment strategy. Furthermore, we accommodate the idea of bagging in the portfolio testing problem, which helps to avoid sharp thresholding and reduces turnover costs substantially. Our Bagged Pretested Portfolio Selection (BPPS) approach borrows from both the shrinkage and the forecast combination literature. The portfolio weights of our strategy are weighted averages of the portfolio weights from a set of stand-alone strategies. More specifically, the weights are generated from pseudo-out-of-sample portfolio pretesting, such that they reflect the probability that a given strategy will be overall best performing. The resulting strategy allows for a flexible and smooth switch between the underlying strategies and outperforms the corresponding stand-alone strategies. Besides yielding high point estimates of the portfolio performance measures, the BPPS approach performs exceptionally well in terms of precision and is robust against outliers resulting from the choice of the asset space.
袋装预测试投资组合选择
摘要本文利用前测和套袋相结合的思想,在竞争组合策略之间进行选择。我们提出了一个投资组合权重向量的估计器,它在选择最佳投资策略时最优地权衡了类型I和类型II的错误。此外,我们在组合测试问题中容纳了打包的想法,这有助于避免尖锐的阈值,并大大减少周转成本。我们的套袋预测试投资组合选择(BPPS)方法借鉴了收缩和预测组合的文献。我们策略的投资组合权重是一组独立策略的投资组合权重的加权平均值。更具体地说,权重是由伪样本外投资组合预测试生成的,这样它们就反映了给定策略整体表现最佳的概率。由此产生的策略允许在基础策略之间灵活而平稳的切换,并且优于相应的独立策略。除了产生投资组合绩效指标的高点估计外,BPPS方法在精度方面表现得非常好,并且对资产空间选择产生的异常值具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信