{"title":"Horizontal Calibration of Vessels with UASs","authors":"Casey O’Heran, B. Calder","doi":"10.1080/01490419.2021.1879330","DOIUrl":null,"url":null,"abstract":"Abstract Knowledge of offset vectors from vessel mounted sonars, to systems such as Inertial Measurement Units and Global Navigation Satellite Systems is crucial for accurate ocean mapping applications. Traditional survey methods, such as employing laser scanners or total stations, are used to determine professional vessel offset distances reliably. However, for vessels of opportunity that are collecting volunteer bathymetric data, it is beneficial to consider survey methods that may be less time consuming, less expensive, or which do not involve bringing the vessel into a dry dock. Thus, this article explores two alternative methods that meet this criterion for horizontally calibrating vessels. Unmanned Aircraft Systems (UASs) were used to horizontally calibrate a vessel with both Structure from Motion photogrammetry and aerial lidar while the vessel was moored to a floating dock. Estimates of the horizontal deviations from ground truth, were obtained by comparing the horizontal distances between targets on a vessel, acquired by the UAS methods, to multiple ground truth sources: a survey-grade terrestrial laser scan and fiberglass tape measurements. The investigated methods were able to achieve horizontal deviations on the order of centimeters with the use of Ground Control Points.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":"44 1","pages":"91 - 107"},"PeriodicalIF":2.0000,"publicationDate":"2021-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01490419.2021.1879330","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/01490419.2021.1879330","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Knowledge of offset vectors from vessel mounted sonars, to systems such as Inertial Measurement Units and Global Navigation Satellite Systems is crucial for accurate ocean mapping applications. Traditional survey methods, such as employing laser scanners or total stations, are used to determine professional vessel offset distances reliably. However, for vessels of opportunity that are collecting volunteer bathymetric data, it is beneficial to consider survey methods that may be less time consuming, less expensive, or which do not involve bringing the vessel into a dry dock. Thus, this article explores two alternative methods that meet this criterion for horizontally calibrating vessels. Unmanned Aircraft Systems (UASs) were used to horizontally calibrate a vessel with both Structure from Motion photogrammetry and aerial lidar while the vessel was moored to a floating dock. Estimates of the horizontal deviations from ground truth, were obtained by comparing the horizontal distances between targets on a vessel, acquired by the UAS methods, to multiple ground truth sources: a survey-grade terrestrial laser scan and fiberglass tape measurements. The investigated methods were able to achieve horizontal deviations on the order of centimeters with the use of Ground Control Points.
期刊介绍:
The aim of Marine Geodesy is to stimulate progress in ocean surveys, mapping, and remote sensing by promoting problem-oriented research in the marine and coastal environment.
The journal will consider articles on the following topics:
topography and mapping;
satellite altimetry;
bathymetry;
positioning;
precise navigation;
boundary demarcation and determination;
tsunamis;
plate/tectonics;
geoid determination;
hydrographic and oceanographic observations;
acoustics and space instrumentation;
ground truth;
system calibration and validation;
geographic information systems.