Widely accessible 3D printing technologies in chemistry, biochemistry and pharmaceutics: applications, materials and prospects

IF 7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
E. Gordeev, V. Ananikov
{"title":"Widely accessible 3D printing technologies in chemistry, biochemistry and pharmaceutics: applications, materials and prospects","authors":"E. Gordeev, V. Ananikov","doi":"10.1070/RCR4980","DOIUrl":null,"url":null,"abstract":"Representative examples of the application of 3D printing in organic synthesis, biochemistry, biotechnology, analytical chemistry, pharmaceutics and chemical education are considered. It is shown that additive technologies open up new prospects for the development of these fields of science. The characteristics of widely used 3D printing methods (fused deposition modelling and stereolithography) are discussed in the context of chemical applications. It is noted that the key feature of these methods is the wide accessibility of technologies and materials. The bibliography includes 498 references.","PeriodicalId":21523,"journal":{"name":"Russian Chemical Reviews","volume":"89 1","pages":"1507 - 1561"},"PeriodicalIF":7.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Chemical Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1070/RCR4980","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 18

Abstract

Representative examples of the application of 3D printing in organic synthesis, biochemistry, biotechnology, analytical chemistry, pharmaceutics and chemical education are considered. It is shown that additive technologies open up new prospects for the development of these fields of science. The characteristics of widely used 3D printing methods (fused deposition modelling and stereolithography) are discussed in the context of chemical applications. It is noted that the key feature of these methods is the wide accessibility of technologies and materials. The bibliography includes 498 references.
3D打印技术在化学、生物化学和制药领域的广泛应用:应用、材料和前景
介绍了3D打印在有机合成、生物化学、生物技术、分析化学、制药和化学教育等领域的代表性应用。结果表明,增材技术为这些科学领域的发展开辟了新的前景。在化学应用的背景下,讨论了广泛使用的3D打印方法(熔融沉积建模和立体光刻)的特点。值得注意的是,这些方法的主要特点是技术和材料的广泛可及性。参考书目包括498篇参考文献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Chemical Reviews
Russian Chemical Reviews 化学-化学综合
CiteScore
13.00
自引率
5.20%
发文量
27
审稿时长
6-12 weeks
期刊介绍: Russian Chemical Reviews serves as a complete translation of the esteemed monthly review journal Uspekhi Khimii, which has been a prominent figure in Russian scientific journals since its establishment in 1932. It offers comprehensive access to the advancements made by chemists from Russia and other former Soviet Union countries. Established in 1932, Russian Chemical Reviews is committed to publishing timely and significant review articles encompassing various facets of modern chemistry, including chemical physics, physical chemistry, computational and theoretical chemistry, catalysis, coordination chemistry, analytical chemistry, organic, organometallic, and organoelement chemistry, chemistry of macromolecules, applied chemistry, biochemistry, bio-organic chemistry, biomolecular chemistry, medicinal chemistry, materials chemistry, nanochemistry, nanostructures, and environmental chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信