{"title":"Symmetry of intrinsically singular solutions of double phase problems","authors":"Stefano Biagi, F. Esposito, E. Vecchi","doi":"10.57262/die036-0304-229","DOIUrl":null,"url":null,"abstract":"where Ω ⊂ R , 1 < p < q < N and a(·) ≥ 0. This class of functionals naturally appear in homogenization theory and in the study of strongly anisotropic materials (see, e.g., [39]), and falls into the framework of the so called functionals with non-standard growth introduced by Marcellini [27, 28]. The literature concerning functionals like (1.1) is pretty vast and concerns as a main topic the regularity of minimizers, see e.g. [2, 11, 12, 23] and the references therein.","PeriodicalId":50581,"journal":{"name":"Differential and Integral Equations","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential and Integral Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/die036-0304-229","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
where Ω ⊂ R , 1 < p < q < N and a(·) ≥ 0. This class of functionals naturally appear in homogenization theory and in the study of strongly anisotropic materials (see, e.g., [39]), and falls into the framework of the so called functionals with non-standard growth introduced by Marcellini [27, 28]. The literature concerning functionals like (1.1) is pretty vast and concerns as a main topic the regularity of minimizers, see e.g. [2, 11, 12, 23] and the references therein.
期刊介绍:
Differential and Integral Equations will publish carefully selected research papers on mathematical aspects of differential and integral equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new, and of interest to a substantial number of mathematicians working in these areas.