{"title":"The Boué–Dupuis formula and the exponential hypercontractivity in the Gaussian space","authors":"Yuu Hariya, S. Watanabe","doi":"10.1214/22-ECP461","DOIUrl":null,"url":null,"abstract":"This paper concerns a variational representation formula for Wiener functionals. Let B = { B t } t ≥ 0 be a standard d -dimensional Brownian motion. Boué and Dupuis (1998) showed that, for any bounded measurable functional F ( B ) of B up to time 1 , the expectation E (cid:104) e F ( B ) (cid:105) admits a variational representation in terms of drifted Brownian motions. In this paper, with a slight modification of insightful reasoning by Lehec (2013) allowing also F ( B ) to be a functional of B over the whole time interval, we prove that the Boué–Dupuis formula holds true provided that both e F ( B ) and F ( B ) are integrable, relaxing conditions in earlier works. We also show that the formula implies the exponential hypercontractivity of the Ornstein–Uhlenbeck semigroup in R d , and hence, due to their equivalence, implies the logarithmic Sobolev inequality in the d -dimensional Gaussian space.","PeriodicalId":50543,"journal":{"name":"Electronic Communications in Probability","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Communications in Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ECP461","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2
Abstract
This paper concerns a variational representation formula for Wiener functionals. Let B = { B t } t ≥ 0 be a standard d -dimensional Brownian motion. Boué and Dupuis (1998) showed that, for any bounded measurable functional F ( B ) of B up to time 1 , the expectation E (cid:104) e F ( B ) (cid:105) admits a variational representation in terms of drifted Brownian motions. In this paper, with a slight modification of insightful reasoning by Lehec (2013) allowing also F ( B ) to be a functional of B over the whole time interval, we prove that the Boué–Dupuis formula holds true provided that both e F ( B ) and F ( B ) are integrable, relaxing conditions in earlier works. We also show that the formula implies the exponential hypercontractivity of the Ornstein–Uhlenbeck semigroup in R d , and hence, due to their equivalence, implies the logarithmic Sobolev inequality in the d -dimensional Gaussian space.
期刊介绍:
The Electronic Communications in Probability (ECP) publishes short research articles in probability theory. Its sister journal, the Electronic Journal of Probability (EJP), publishes full-length articles in probability theory. Short papers, those less than 12 pages, should be submitted to ECP first. EJP and ECP share the same editorial board, but with different Editors in Chief.