The Boué–Dupuis formula and the exponential hypercontractivity in the Gaussian space

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
Yuu Hariya, S. Watanabe
{"title":"The Boué–Dupuis formula and the exponential hypercontractivity in the Gaussian space","authors":"Yuu Hariya, S. Watanabe","doi":"10.1214/22-ECP461","DOIUrl":null,"url":null,"abstract":"This paper concerns a variational representation formula for Wiener functionals. Let B = { B t } t ≥ 0 be a standard d -dimensional Brownian motion. Boué and Dupuis (1998) showed that, for any bounded measurable functional F ( B ) of B up to time 1 , the expectation E (cid:104) e F ( B ) (cid:105) admits a variational representation in terms of drifted Brownian motions. In this paper, with a slight modification of insightful reasoning by Lehec (2013) allowing also F ( B ) to be a functional of B over the whole time interval, we prove that the Boué–Dupuis formula holds true provided that both e F ( B ) and F ( B ) are integrable, relaxing conditions in earlier works. We also show that the formula implies the exponential hypercontractivity of the Ornstein–Uhlenbeck semigroup in R d , and hence, due to their equivalence, implies the logarithmic Sobolev inequality in the d -dimensional Gaussian space.","PeriodicalId":50543,"journal":{"name":"Electronic Communications in Probability","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Communications in Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ECP461","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

This paper concerns a variational representation formula for Wiener functionals. Let B = { B t } t ≥ 0 be a standard d -dimensional Brownian motion. Boué and Dupuis (1998) showed that, for any bounded measurable functional F ( B ) of B up to time 1 , the expectation E (cid:104) e F ( B ) (cid:105) admits a variational representation in terms of drifted Brownian motions. In this paper, with a slight modification of insightful reasoning by Lehec (2013) allowing also F ( B ) to be a functional of B over the whole time interval, we prove that the Boué–Dupuis formula holds true provided that both e F ( B ) and F ( B ) are integrable, relaxing conditions in earlier works. We also show that the formula implies the exponential hypercontractivity of the Ornstein–Uhlenbeck semigroup in R d , and hence, due to their equivalence, implies the logarithmic Sobolev inequality in the d -dimensional Gaussian space.
bou - dupuis公式与高斯空间中的指数超收缩性
本文讨论了维纳泛函的一个变分表示公式。设B = {B t} t≥0为标准d维布朗运动。bouboure和Dupuis(1998)表明,对于任何有界的可测泛函F (B),对于时间1,期望E (cid:104) E F (B) (cid:105)允许在漂移布朗运动方面的变分表示。在本文中,对Lehec(2013)的深刻推理稍加修改,允许F (B)也是B在整个时间区间内的泛函,我们证明了在e F (B)和F (B)都是可积的松弛条件下,bou - dupuis公式成立。我们还证明了该公式暗示了R d中Ornstein-Uhlenbeck半群的指数超收缩性,因此,由于它们的等价性,暗示了d维高斯空间中的对数Sobolev不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Communications in Probability
Electronic Communications in Probability 工程技术-统计学与概率论
CiteScore
1.00
自引率
0.00%
发文量
38
审稿时长
6-12 weeks
期刊介绍: The Electronic Communications in Probability (ECP) publishes short research articles in probability theory. Its sister journal, the Electronic Journal of Probability (EJP), publishes full-length articles in probability theory. Short papers, those less than 12 pages, should be submitted to ECP first. EJP and ECP share the same editorial board, but with different Editors in Chief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信