Sistem Pengenal Isyarat Tangan Untuk Mengendalikan Gerakan Robot Beroda menggunakan Convolutional Neural Network

Habib Astari Adi, Ika Candradewi
{"title":"Sistem Pengenal Isyarat Tangan Untuk Mengendalikan Gerakan Robot Beroda menggunakan Convolutional Neural Network","authors":"Habib Astari Adi, Ika Candradewi","doi":"10.22146/IJEIS.50208","DOIUrl":null,"url":null,"abstract":"Currently, Human and computer interaction is generally done using a remote control. This approach tends to be impractical for wheeled robot operation because it must always carry an intermediary tool during the operation. The application of hand gesture recognition using digital image processing techniques and machine learning in the control process of wheeled robots will facilitate the control of wheeled robots because control no longer requires an intermediary tool.In this study, hand image taken using a camera then will be processed using a single board computer to be recognized. The results of recognized are passed on to arduino leonardo and DC motor to control twelve wheeled robot movement. The method used in this study is contrast stretching for preprocessing and Convolutional Neural Network (CNN) for hand recognition. This method is tested with a variation of  bright 26-140 lux, the distance from the face to the camera is 120-200cm. Hand recognition systems using this method resulting accuracy 97,5%, precision 97,57%, sensitivity 97.5%, spesificity 99,77 and f1 score 97.45%.","PeriodicalId":31590,"journal":{"name":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/IJEIS.50208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Currently, Human and computer interaction is generally done using a remote control. This approach tends to be impractical for wheeled robot operation because it must always carry an intermediary tool during the operation. The application of hand gesture recognition using digital image processing techniques and machine learning in the control process of wheeled robots will facilitate the control of wheeled robots because control no longer requires an intermediary tool.In this study, hand image taken using a camera then will be processed using a single board computer to be recognized. The results of recognized are passed on to arduino leonardo and DC motor to control twelve wheeled robot movement. The method used in this study is contrast stretching for preprocessing and Convolutional Neural Network (CNN) for hand recognition. This method is tested with a variation of  bright 26-140 lux, the distance from the face to the camera is 120-200cm. Hand recognition systems using this method resulting accuracy 97,5%, precision 97,57%, sensitivity 97.5%, spesificity 99,77 and f1 score 97.45%.
用卷积神经网络控制孤立机器人运动的手信号识别系统
目前,人机交互通常使用遥控器进行。这种方法对于轮式机器人的操作往往是不切实际的,因为它在操作过程中必须始终携带中间工具。使用数字图像处理技术和机器学习的手势识别在轮式机器人控制过程中的应用将有助于轮式机器人的控制,因为控制不再需要中介工具。在这项研究中,使用相机拍摄的手部图像将使用单板计算机进行处理以进行识别。将识别结果传递给arduino leonardo和直流电机来控制十二轮机器人的运动。本研究中使用的方法是对比度拉伸进行预处理,卷积神经网络(CNN)进行手部识别。该方法在亮度为26-140勒克斯的变化下进行测试,从面部到相机的距离为120-200厘米。使用该方法的手识别系统的准确率为97.5%,精度为97.57%,灵敏度为97.5%、特异性为99,77,f1得分为97.45%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信