Succinimidium perchlorate as a novel and efficient Brönsted acidic ionic liquid promoter for the synthesis of 5-arylidene barbituric acid and pyrano[2,3-d] pyrimidinone derivatives
F. Shirini, Sara Haghpanah-Kouchesfehani, Z. Azizi, Nader Daneshvar, H. Tajik
{"title":"Succinimidium perchlorate as a novel and efficient Brönsted acidic ionic liquid promoter for the synthesis of 5-arylidene barbituric acid and pyrano[2,3-d] pyrimidinone derivatives","authors":"F. Shirini, Sara Haghpanah-Kouchesfehani, Z. Azizi, Nader Daneshvar, H. Tajik","doi":"10.2174/2213337210666230420100001","DOIUrl":null,"url":null,"abstract":"\n\nIn this article, succinimidinium perchlorate as a new acidic ionic liquid catalyst was prepared and used to synthesize 5-arylidene barbituric acid and pyrano[2,3-d]pyrimidinone derivatives.\n\n\n\nThese two derivatives of barbituric acid have a variety of useful properties.\n\n\n\nIn this article, succinimidinium perchlorate as a new acidic ionic liquid catalyst was prepared, identified and used to synthesize 5-arylidene barbituric acid and pyrano[2,3-d]pyrimidinone derivatives.\n\n\n\nThe advantages of this reagent were high yields, high efficiency, short reaction times, easy performance, easy work-up and reusability.\n\n\n\nThe FT-IR spectra were taken as liquid or made from KBr tablets using the Bruker PS-15 FT-IR. The vibrational frequencies absorbed were reported in cm-1.1H NMR using DMSO as solvent were recorded by a Bruker Avance NMR 500 MHz. 13C NMR spectra were recorded in DMSO using Bruker Avance NMR 125 MHz device. Tetramethylsilane was used as an internal standard. The electrothermal apparatus has been used to measure melting points in degrees Celsius. Mass spectra were performed using Agilent Technologies 5975C spectrometer via mass selective detector (MSD) operating at an ionization potential of 70 eV.\n\nPreparation of the catalysts\nIn an ice bath, to a 50 mL round-bottom balloon containing 0.990 g of succinimide (10.0 mmol) in 20.0 mL of dry dichloromethane, perchloric acid (70%, 0.85 mL, 10 mmol) was added drop-wise over 20 minutes. After that, the mixture was stirred at room temperature for 40 minutes. At this stage, the solvent was decanted and a white solid was obtained. The precipitated product was washed 3 times with diethyl ether (3×15.0 mL) to elute the non-ionic residue. Finally, the ionic liquid was dried by vacuum apparatus and keeping in the oven at 60 ̊C for six hours .\n\n\n\nSuccinimidinium perchlorate, which was made for the first time in this project, was identified with different methods, including FT-IR, 1H NMR, 13C NMR and mass spectroscopic techniques\n","PeriodicalId":10945,"journal":{"name":"Current Organocatalysis","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Organocatalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2213337210666230420100001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, succinimidinium perchlorate as a new acidic ionic liquid catalyst was prepared and used to synthesize 5-arylidene barbituric acid and pyrano[2,3-d]pyrimidinone derivatives.
These two derivatives of barbituric acid have a variety of useful properties.
In this article, succinimidinium perchlorate as a new acidic ionic liquid catalyst was prepared, identified and used to synthesize 5-arylidene barbituric acid and pyrano[2,3-d]pyrimidinone derivatives.
The advantages of this reagent were high yields, high efficiency, short reaction times, easy performance, easy work-up and reusability.
The FT-IR spectra were taken as liquid or made from KBr tablets using the Bruker PS-15 FT-IR. The vibrational frequencies absorbed were reported in cm-1.1H NMR using DMSO as solvent were recorded by a Bruker Avance NMR 500 MHz. 13C NMR spectra were recorded in DMSO using Bruker Avance NMR 125 MHz device. Tetramethylsilane was used as an internal standard. The electrothermal apparatus has been used to measure melting points in degrees Celsius. Mass spectra were performed using Agilent Technologies 5975C spectrometer via mass selective detector (MSD) operating at an ionization potential of 70 eV.
Preparation of the catalysts
In an ice bath, to a 50 mL round-bottom balloon containing 0.990 g of succinimide (10.0 mmol) in 20.0 mL of dry dichloromethane, perchloric acid (70%, 0.85 mL, 10 mmol) was added drop-wise over 20 minutes. After that, the mixture was stirred at room temperature for 40 minutes. At this stage, the solvent was decanted and a white solid was obtained. The precipitated product was washed 3 times with diethyl ether (3×15.0 mL) to elute the non-ionic residue. Finally, the ionic liquid was dried by vacuum apparatus and keeping in the oven at 60 ̊C for six hours .
Succinimidinium perchlorate, which was made for the first time in this project, was identified with different methods, including FT-IR, 1H NMR, 13C NMR and mass spectroscopic techniques
期刊介绍:
Current Organocatalysis is an international peer-reviewed journal that publishes significant research in all areas of organocatalysis. The journal covers organo homogeneous/heterogeneous catalysis, innovative mechanistic studies and kinetics of organocatalytic processes focusing on practical, theoretical and computational aspects. It also includes potential applications of organocatalysts in the fields of drug discovery, synthesis of novel molecules, synthetic method development, green chemistry and chemoenzymatic reactions. This journal also accepts papers on methods, reagents, and mechanism of a synthetic process and technology pertaining to chemistry. Moreover, this journal features full-length/mini review articles within organocatalysis and synthetic chemistry. It is the premier source of organocatalysis and synthetic methods related information for chemists, biologists and engineers pursuing research in industry and academia.