New characterizations of spacelike hyperplanes in the steady state space

Pub Date : 2020-03-29 DOI:10.7146/math.scand.a-117703
C. Aquino, H. Baltazar, H. Lima
{"title":"New characterizations of spacelike hyperplanes in the steady state space","authors":"C. Aquino, H. Baltazar, H. Lima","doi":"10.7146/math.scand.a-117703","DOIUrl":null,"url":null,"abstract":"In this article, we deal with complete spacelike hypersurfaces immersed in an open region of the de Sitter space Sn+11 which is known as the steady state space Hn+1. Under suitable constraints on the behavior of the higher order mean curvatures of these hypersurfaces, we are able to prove that they must be spacelike hyperplanes of Hn+1. Furthermore, through the analysis of the hyperbolic cylinders of Hn+1, we discuss the importance of the main hypothesis in our results. Our approach is based on a generalized maximum principle at infinity for complete Riemannian manifolds.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-117703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this article, we deal with complete spacelike hypersurfaces immersed in an open region of the de Sitter space Sn+11 which is known as the steady state space Hn+1. Under suitable constraints on the behavior of the higher order mean curvatures of these hypersurfaces, we are able to prove that they must be spacelike hyperplanes of Hn+1. Furthermore, through the analysis of the hyperbolic cylinders of Hn+1, we discuss the importance of the main hypothesis in our results. Our approach is based on a generalized maximum principle at infinity for complete Riemannian manifolds.
分享
查看原文
稳态空间中类空间超平面的新性质
在本文中,我们处理了浸入de Sitter空间Sn+11的开放区域中的完全类空超曲面,该开放区域被称为稳态空间Hn+1。在这些超曲面的高阶平均曲率行为的适当约束下,我们能够证明它们一定是Hn+1的类空间超平面。此外,通过对Hn+1的双曲柱面的分析,我们讨论了主要假设在我们的结果中的重要性。我们的方法是基于完全黎曼流形无穷大的广义极大值原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信