{"title":"On concave perturbations of a periodic elliptic problem in R2 involving critical exponential growth","authors":"Xiaoyan Lin, Xianhua Tang","doi":"10.1515/anona-2022-0257","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we consider the existence of solutions for nonlinear elliptic equations of the form (0.1) − Δ u + V ( x ) u = f ( x , u ) + λ a ( x ) ∣ u ∣ q − 2 u , x ∈ R 2 , -\\Delta u+V\\left(x)u=f\\left(x,u)+\\lambda a\\left(x)| u{| }^{q-2}u,\\hspace{1em}x\\in {{\\mathbb{R}}}^{2}, where λ > 0 \\lambda \\gt 0 , q ∈ ( 1 , 2 ) q\\in \\left(1,2) , a ∈ L 2 / ( 2 − q ) ( R 2 ) a\\in {L}^{2\\text{/}\\left(2-q)}\\left({{\\mathbb{R}}}^{2}) , V ( x ) V\\left(x) , and f ( x , t ) f\\left(x,t) are 1-periodic with respect to x x , and f ( x , t ) f\\left(x,t) has critical exponential growth at t = ∞ t=\\infty . By combining the variational methods, Trudinger-Moser inequality, and some new techniques with detailed estimates for the minimax level of the energy functional, we prove the existence of a nontrivial solution for the aforementioned equation under some weak assumptions. Our results show that the presence of the concave term (i.e. λ > 0 \\lambda \\gt 0 ) is very helpful to the existence of nontrivial solutions for equation (0.1) in one sense.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0257","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this paper, we consider the existence of solutions for nonlinear elliptic equations of the form (0.1) − Δ u + V ( x ) u = f ( x , u ) + λ a ( x ) ∣ u ∣ q − 2 u , x ∈ R 2 , -\Delta u+V\left(x)u=f\left(x,u)+\lambda a\left(x)| u{| }^{q-2}u,\hspace{1em}x\in {{\mathbb{R}}}^{2}, where λ > 0 \lambda \gt 0 , q ∈ ( 1 , 2 ) q\in \left(1,2) , a ∈ L 2 / ( 2 − q ) ( R 2 ) a\in {L}^{2\text{/}\left(2-q)}\left({{\mathbb{R}}}^{2}) , V ( x ) V\left(x) , and f ( x , t ) f\left(x,t) are 1-periodic with respect to x x , and f ( x , t ) f\left(x,t) has critical exponential growth at t = ∞ t=\infty . By combining the variational methods, Trudinger-Moser inequality, and some new techniques with detailed estimates for the minimax level of the energy functional, we prove the existence of a nontrivial solution for the aforementioned equation under some weak assumptions. Our results show that the presence of the concave term (i.e. λ > 0 \lambda \gt 0 ) is very helpful to the existence of nontrivial solutions for equation (0.1) in one sense.