Guo Bo, Liu Dexiang, Wu Shuanghua, Ma Yue, Hu Jianfei, Lu Wei
{"title":"Micro-focus computed tomography for turbine blade based on all-optical bremsstrahlung source","authors":"Guo Bo, Liu Dexiang, Wu Shuanghua, Ma Yue, Hu Jianfei, Lu Wei","doi":"10.11884/HPLPB202133.210201","DOIUrl":null,"url":null,"abstract":"Computed tomography is a major technique for nondestructive detection of internal defects of dense materials and large-size devices. It is widely used in material science, railway, aerospace, national defense, military industry and other industries. At present, conventional high-energy industrial computed tomography system uses the X-ray source based on traditional thermionic RF electron gun, which can only provide millimeter source size, thus limiting its imaging spatial resolution. A high-energy micro-focus X-ray source is the key means to realize high-resolution high-energy industry computed tomography. As an emerging accelerator technology, the laser wakefield accelerator is a promising candidate for the micro-focus high-energy industrial computed tomography. This article reports experimental results of a micro-focus X-ray source based on laser wakefield acceleration and a computed tomography for a turbine blade. Using a 20 TW Ti: sapphire laser system, an electron beam with a charge of (140±44) pC is generated through ionization-induced injection, and then an all-optical bremsstrahlung X-ray source with an accumulated source size of 25 μm is obtained by using a 1.5 mm tungsten target. Using this source, a preliminary compressed-sensing-based computed tomography for a turbine blade is performed.","PeriodicalId":39871,"journal":{"name":"强激光与粒子束","volume":"33 1","pages":"074001-1-074001-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"强激光与粒子束","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.11884/HPLPB202133.210201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Computed tomography is a major technique for nondestructive detection of internal defects of dense materials and large-size devices. It is widely used in material science, railway, aerospace, national defense, military industry and other industries. At present, conventional high-energy industrial computed tomography system uses the X-ray source based on traditional thermionic RF electron gun, which can only provide millimeter source size, thus limiting its imaging spatial resolution. A high-energy micro-focus X-ray source is the key means to realize high-resolution high-energy industry computed tomography. As an emerging accelerator technology, the laser wakefield accelerator is a promising candidate for the micro-focus high-energy industrial computed tomography. This article reports experimental results of a micro-focus X-ray source based on laser wakefield acceleration and a computed tomography for a turbine blade. Using a 20 TW Ti: sapphire laser system, an electron beam with a charge of (140±44) pC is generated through ionization-induced injection, and then an all-optical bremsstrahlung X-ray source with an accumulated source size of 25 μm is obtained by using a 1.5 mm tungsten target. Using this source, a preliminary compressed-sensing-based computed tomography for a turbine blade is performed.