A nitrogen-doped graphene-supported nickel-single-atom catalyst in the flow cell meets the industrial criteria of carbon dioxide reduction reaction to carbon monoxide

Y. Lu, Hsin-Jung Tsai, Wen Huang, Tsung-Ju Lee, Zih-Yi Lin, Shao-Hui Hsu, Sung-Fu Hung
{"title":"A nitrogen-doped graphene-supported nickel-single-atom catalyst in the flow cell meets the industrial criteria of carbon dioxide reduction reaction to carbon monoxide","authors":"Y. Lu, Hsin-Jung Tsai, Wen Huang, Tsung-Ju Lee, Zih-Yi Lin, Shao-Hui Hsu, Sung-Fu Hung","doi":"10.3389/fctls.2022.915971","DOIUrl":null,"url":null,"abstract":"Carbon dioxide reduction reaction (CO2RR) is a promising approach to accomplishing net zero CO2 emissions. Among CO2RR catalysts, nitrogen-doped graphene-supported single-atom catalysts show a remarkable conversion rate from CO2 to CO; however, the low production amount has been limited using the conversion H cell, hindering its industrial development. In this work, we synthesize a nitrogen-doped graphene-supported nickel-single-atom catalyst and conduct CO2RR in a flow cell, exhibiting a CO2-to-CO Faradaic efficiency of 96% and a partial current density of 144 mA cm−2. It can also achieve the highest partial current density of 204 mA cm−2 with a turnover frequency of 7,852 h−1. According to the techno-economic analysis, these preeminent activities meet the industrial criteria (Faradaic efficiency >60% and partial current density >100 mA cm−2). This activity enhancement using a flow system can significantly accelerate net-zero CO2 emission realization.","PeriodicalId":73071,"journal":{"name":"Frontiers in catalysis","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fctls.2022.915971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon dioxide reduction reaction (CO2RR) is a promising approach to accomplishing net zero CO2 emissions. Among CO2RR catalysts, nitrogen-doped graphene-supported single-atom catalysts show a remarkable conversion rate from CO2 to CO; however, the low production amount has been limited using the conversion H cell, hindering its industrial development. In this work, we synthesize a nitrogen-doped graphene-supported nickel-single-atom catalyst and conduct CO2RR in a flow cell, exhibiting a CO2-to-CO Faradaic efficiency of 96% and a partial current density of 144 mA cm−2. It can also achieve the highest partial current density of 204 mA cm−2 with a turnover frequency of 7,852 h−1. According to the techno-economic analysis, these preeminent activities meet the industrial criteria (Faradaic efficiency >60% and partial current density >100 mA cm−2). This activity enhancement using a flow system can significantly accelerate net-zero CO2 emission realization.
流动池中的氮掺杂石墨烯负载的镍单原子催化剂符合二氧化碳还原为一氧化碳的工业标准
二氧化碳还原反应(CO2RR)是实现二氧化碳净零排放的一种很有前途的方法。在CO2RR催化剂中,氮掺杂石墨烯负载的单原子催化剂表现出显著的CO2向CO的转化率;然而,使用转化H电池的低产量受到限制,阻碍了其工业发展。在这项工作中,我们合成了一种氮掺杂石墨烯负载的镍单原子催化剂,并在流动池中进行CO2RR,表现出96%的CO2对CO法拉第效率和144 mA cm−2的部分电流密度。它还可以实现204 mA cm−2的最高局部电流密度,转换频率为7852 h−1。根据技术经济分析,这些卓越的活动符合工业标准(法拉第效率>60%,局部电流密度>100 mA cm−2)。使用流动系统的这种活动增强可以显著加速CO2净零排放的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信