Scale to estimate the aspect-oriented sentiment polarity under anaphors influence (SPAI)

IF 0.8 Q4 ROBOTICS
S. S. Sonawane, S. Kolhe
{"title":"Scale to estimate the aspect-oriented sentiment polarity under anaphors influence (SPAI)","authors":"S. S. Sonawane, S. Kolhe","doi":"10.1108/ijius-06-2021-0040","DOIUrl":null,"url":null,"abstract":"PurposeThe purpose of this paper is to handle the anaphors through anaphora resolution in aspect-oriented sentiment analysis. Sentiment analysis is one of the predictive analytics of social media. In particular, the social media platform Twitter is an open platform to post the opinion by subscribers on contextual issues, events, products, individuals and organizations.Design/methodology/approachThe sentiment polarity assessment is not deterministic to conclude the opinion of the target audience unless the polarity is assessed under diversified aspects. Hence, the aspect-oriented sentiment polarity assessment is a crucial objective of the opinion assessment over social media. However, the aspect-oriented sentiment polarity assessment often influences by the curse of anaphora resolution.FindingsFocusing on these limitations, a scale to estimate the aspects oriented sentiment polarity under anaphors influence has been portrayed in this article. To assess the aspect-based sentiment polarity of the tweets, the anaphors of the tweets have been considered to assess the weightage of the tweets toward the sentiment polarity.Originality/valueThe experimental study presents the performance of the proposed model by comparing it with the contemporary models, which are estimating the sentiment polarity tweets under anaphors impact.","PeriodicalId":42876,"journal":{"name":"International Journal of Intelligent Unmanned Systems","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Unmanned Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijius-06-2021-0040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

PurposeThe purpose of this paper is to handle the anaphors through anaphora resolution in aspect-oriented sentiment analysis. Sentiment analysis is one of the predictive analytics of social media. In particular, the social media platform Twitter is an open platform to post the opinion by subscribers on contextual issues, events, products, individuals and organizations.Design/methodology/approachThe sentiment polarity assessment is not deterministic to conclude the opinion of the target audience unless the polarity is assessed under diversified aspects. Hence, the aspect-oriented sentiment polarity assessment is a crucial objective of the opinion assessment over social media. However, the aspect-oriented sentiment polarity assessment often influences by the curse of anaphora resolution.FindingsFocusing on these limitations, a scale to estimate the aspects oriented sentiment polarity under anaphors influence has been portrayed in this article. To assess the aspect-based sentiment polarity of the tweets, the anaphors of the tweets have been considered to assess the weightage of the tweets toward the sentiment polarity.Originality/valueThe experimental study presents the performance of the proposed model by comparing it with the contemporary models, which are estimating the sentiment polarity tweets under anaphors impact.
回指影响下面向方面的情感极性量表(SPAI)
目的在面向方面的情感分析中,通过回指消解对回指进行处理。情感分析是社交媒体预测分析的一种。特别是,社交媒体平台Twitter是一个开放的平台,可以发布用户对上下文问题、事件、产品、个人和组织的意见。设计/方法/途径情感极性评估不能确定地得出目标受众的意见,除非从多个方面对极性进行评估。因此,面向方面的情感极性评估是社交媒体意见评估的重要目标。然而,面向方面的情感极性评估往往受到回指消解的诅咒的影响。针对这些局限性,本文描绘了一个量表来估计在隐喻影响下面向情感极性的方面。为了评估推文的基于方面的情绪极性,考虑了推文的类比来评估推文对情绪极性的权重。独创性/价值实验研究通过将所提出的模型与现有模型进行比较,展示了该模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信