The Hasse principle for random Fano hypersurfaces

IF 5.7 1区 数学 Q1 MATHEMATICS
T. Browning, Pierre Le Boudec, W. Sawin
{"title":"The Hasse principle for random Fano hypersurfaces","authors":"T. Browning, Pierre Le Boudec, W. Sawin","doi":"10.4007/annals.2023.197.3.3","DOIUrl":null,"url":null,"abstract":"It is known that the Brauer--Manin obstruction to the Hasse principle is vacuous for smooth Fano hypersurfaces of dimension at least $3$ over any number field. Moreover, for such varieties it follows from a general conjecture of Colliot-Thelene that the Brauer--Manin obstruction to the Hasse principle should be the only one, so that the Hasse principle is expected to hold. Working over the field of rational numbers and ordering Fano hypersurfaces of fixed degree and dimension by height, we prove that almost every such hypersurface satisfies the Hasse principle provided that the dimension is at least $3$. This proves a conjecture of Poonen and Voloch in every case except for cubic surfaces.","PeriodicalId":8134,"journal":{"name":"Annals of Mathematics","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2020-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2023.197.3.3","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

Abstract

It is known that the Brauer--Manin obstruction to the Hasse principle is vacuous for smooth Fano hypersurfaces of dimension at least $3$ over any number field. Moreover, for such varieties it follows from a general conjecture of Colliot-Thelene that the Brauer--Manin obstruction to the Hasse principle should be the only one, so that the Hasse principle is expected to hold. Working over the field of rational numbers and ordering Fano hypersurfaces of fixed degree and dimension by height, we prove that almost every such hypersurface satisfies the Hasse principle provided that the dimension is at least $3$. This proves a conjecture of Poonen and Voloch in every case except for cubic surfaces.
随机Fano超曲面的Hasse原理
已知对于任意数域上至少3维的光滑Fano超曲面,Hasse原理的Brauer—Manin障碍是真空的。此外,对于这样的变化,从科利奥-特勒内的一个一般猜想中可以得出,对哈塞原理的Brauer- Manin障碍应该是唯一的障碍,因此哈塞原理有望成立。在有理数域上,对定次定维的Fano超曲面按高度排序,证明了只要维数至少为$3$,几乎每一个这样的超曲面都满足Hasse原理。这证明了Poonen和Voloch的一个猜想,除了立方曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Mathematics
Annals of Mathematics 数学-数学
CiteScore
9.10
自引率
2.00%
发文量
29
审稿时长
12 months
期刊介绍: The Annals of Mathematics is published bimonthly by the Department of Mathematics at Princeton University with the cooperation of the Institute for Advanced Study. Founded in 1884 by Ormond Stone of the University of Virginia, the journal was transferred in 1899 to Harvard University, and in 1911 to Princeton University. Since 1933, the Annals has been edited jointly by Princeton University and the Institute for Advanced Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信