Modelling complex molecular interactions in catalytic materials for energy storage and conversion in nuclear magnetic resonance

Wenda Hu, Nicholas R. Jaegers, Austin D. Winkelman, Shiva Murali, K. Mueller, Yong Wang, J. Hu
{"title":"Modelling complex molecular interactions in catalytic materials for energy storage and conversion in nuclear magnetic resonance","authors":"Wenda Hu, Nicholas R. Jaegers, Austin D. Winkelman, Shiva Murali, K. Mueller, Yong Wang, J. Hu","doi":"10.3389/fctls.2022.935174","DOIUrl":null,"url":null,"abstract":"Nuclear magnetic resonance (NMR) is a non-destructive and atom-specific specific tool that has become a burgeoning analytic method for understanding the detailed molecular interactions in catalysis and energy storage materials. However, the observation of diverse chemical shifts arising from complex molecular interactions makes the interpretation of NMR spectroscopy increasingly challenging, in particular for a novel system without standards for comparison. Density functional theory-NMR (DFT-NMR) is an indispensable tool to mitigate these challenges and provide detailed 3D molecular structures that relate materials and reaction intermediate structures, and information about chemical interactions, dynamics, and reaction mechanisms. This review provides a fundamental background in DFT-NMR relating to theory development, critical parameters for calculating NMR properties, computational accuracy, and the current capabilities. A variety of practical examples from the fields of catalysis and energy storage, including CO2 capture, are summarized to illustrate the capabilities of DFT-NMR application to date. Last but not least, cautionary notes on the application of these strategies are presented for researchers modeling their own systems.","PeriodicalId":73071,"journal":{"name":"Frontiers in catalysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fctls.2022.935174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Nuclear magnetic resonance (NMR) is a non-destructive and atom-specific specific tool that has become a burgeoning analytic method for understanding the detailed molecular interactions in catalysis and energy storage materials. However, the observation of diverse chemical shifts arising from complex molecular interactions makes the interpretation of NMR spectroscopy increasingly challenging, in particular for a novel system without standards for comparison. Density functional theory-NMR (DFT-NMR) is an indispensable tool to mitigate these challenges and provide detailed 3D molecular structures that relate materials and reaction intermediate structures, and information about chemical interactions, dynamics, and reaction mechanisms. This review provides a fundamental background in DFT-NMR relating to theory development, critical parameters for calculating NMR properties, computational accuracy, and the current capabilities. A variety of practical examples from the fields of catalysis and energy storage, including CO2 capture, are summarized to illustrate the capabilities of DFT-NMR application to date. Last but not least, cautionary notes on the application of these strategies are presented for researchers modeling their own systems.
核磁共振储能和转换催化材料中复杂分子相互作用的建模
核磁共振(NMR)是一种非破坏性和原子特异性的特异工具,已成为一种新兴的分析方法,用于了解催化和储能材料中分子相互作用的细节。然而,由于观察到复杂分子相互作用引起的各种化学变化,使得核磁共振光谱的解释越来越具有挑战性,特别是对于一个没有比较标准的新系统。密度泛函理论-核磁共振(DFT-NMR)是缓解这些挑战不可或缺的工具,可以提供与材料和反应中间结构相关的详细3D分子结构,以及有关化学相互作用、动力学和反应机制的信息。本文综述了DFT-NMR的基本背景,包括理论发展、计算核磁共振性质的关键参数、计算精度和当前能力。总结了催化和能源存储领域的各种实际例子,包括二氧化碳捕获,以说明DFT-NMR迄今为止的应用能力。最后但并非最不重要的是,对这些策略的应用提出了对研究人员建模自己的系统的注意事项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信