{"title":"Multi-period mean-variance portfolio selection with practical constraints using heuristic genetic algorithms","authors":"Y. Chen, Hao Yang","doi":"10.1504/ijcee.2020.10029943","DOIUrl":null,"url":null,"abstract":"Since Markowitz proposed the mean-variance (MV) formulation in 1952, it has been used to configure various portfolio selection problems. However Markowitz's solution is only for a single period. Multi-period portfolio selection problems have been studied for a long time but most solutions depend on various forms of utility function, which are unfamiliar to general investors. Some works have formulated the problems as MV models and solved them analytically in closed form subject to certain assumptions. Unlike analytical solutions, genetic algorithms (GA) are more flexible because they can solve problems without restrictive assumptions. The purpose of this paper is to formulate multi-period portfolio selection problems as MV models and solve them by GA. To illustrate the generality of our algorithm, we implement a program by Microsoft Visual Studio to solve a multi-period portfolio selection problem for which there exists no general analytical solution.","PeriodicalId":42342,"journal":{"name":"International Journal of Computational Economics and Econometrics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Economics and Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcee.2020.10029943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 2
Abstract
Since Markowitz proposed the mean-variance (MV) formulation in 1952, it has been used to configure various portfolio selection problems. However Markowitz's solution is only for a single period. Multi-period portfolio selection problems have been studied for a long time but most solutions depend on various forms of utility function, which are unfamiliar to general investors. Some works have formulated the problems as MV models and solved them analytically in closed form subject to certain assumptions. Unlike analytical solutions, genetic algorithms (GA) are more flexible because they can solve problems without restrictive assumptions. The purpose of this paper is to formulate multi-period portfolio selection problems as MV models and solve them by GA. To illustrate the generality of our algorithm, we implement a program by Microsoft Visual Studio to solve a multi-period portfolio selection problem for which there exists no general analytical solution.
期刊介绍:
IJCEE explores the intersection of economics, econometrics and computation. It investigates the application of recent computational techniques to all branches of economic modelling, both theoretical and empirical. IJCEE aims at an international and multidisciplinary standing, promoting rigorous quantitative examination of relevant economic issues and policy analyses. The journal''s research areas include computational economic modelling, computational econometrics and statistics and simulation methods. It is an internationally competitive, peer-reviewed journal dedicated to stimulating discussion at the forefront of economic and econometric research. Topics covered include: -Computational Economics: Computational techniques applied to economic problems and policies, Agent-based modelling, Control and game theory, General equilibrium models, Optimisation methods, Economic dynamics, Software development and implementation, -Econometrics: Applied micro and macro econometrics, Monte Carlo simulation, Robustness and sensitivity analysis, Bayesian econometrics, Time series analysis and forecasting techniques, Operational research methods with applications to economics, Software development and implementation.