{"title":"On $\\mu$-Zariski pairs of links","authors":"M. Oka","doi":"10.2969/jmsj/89138913","DOIUrl":null,"url":null,"abstract":"The notion of Zariski pairs for projective curves in $\\mathbb P^2$ is known since the pioneer paper of Zariski \\cite{Zariski} and for further development, we refer the reference in \\cite{Bartolo}.In this paper, we introduce a notion of Zariski pair of links in the class of isolated hypersurface singularities. Such a pair is canonically produced from a Zariski (or a weak Zariski ) pair of curves $C=\\{f(x,y,z)=0\\}$ and $C'=\\{g(x,y,z)=0\\}$ of degree $d$ by simply adding a monomial $z^{d+m}$ to $f$ and $g$ so that the corresponding affine hypersurfaces have isolated singularities at the origin. They have a same zeta function and a same Milnor number (\\cite{Almost}). We give new examples of Zariski pairs which have the same $\\mu^*$ sequence and a same zeta function but two functions belong to different connected components of $\\mu$-constant strata (Theorem \\ref{mu-zariski}). Two link 3-folds are not diffeomorphic and they are distinguished by the first homology which implies the Jordan form of their monodromies are different (Theorem \\ref{main2}). We start from weak Zariski pairs of projective curves to construct new Zariski pairs of surfaces which have non-diffeomorphic link 3-folds. We also prove that hypersurface pair constructed from a Zariski pair give a diffeomorphic links (Theorem \\ref{main3}).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/jmsj/89138913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The notion of Zariski pairs for projective curves in $\mathbb P^2$ is known since the pioneer paper of Zariski \cite{Zariski} and for further development, we refer the reference in \cite{Bartolo}.In this paper, we introduce a notion of Zariski pair of links in the class of isolated hypersurface singularities. Such a pair is canonically produced from a Zariski (or a weak Zariski ) pair of curves $C=\{f(x,y,z)=0\}$ and $C'=\{g(x,y,z)=0\}$ of degree $d$ by simply adding a monomial $z^{d+m}$ to $f$ and $g$ so that the corresponding affine hypersurfaces have isolated singularities at the origin. They have a same zeta function and a same Milnor number (\cite{Almost}). We give new examples of Zariski pairs which have the same $\mu^*$ sequence and a same zeta function but two functions belong to different connected components of $\mu$-constant strata (Theorem \ref{mu-zariski}). Two link 3-folds are not diffeomorphic and they are distinguished by the first homology which implies the Jordan form of their monodromies are different (Theorem \ref{main2}). We start from weak Zariski pairs of projective curves to construct new Zariski pairs of surfaces which have non-diffeomorphic link 3-folds. We also prove that hypersurface pair constructed from a Zariski pair give a diffeomorphic links (Theorem \ref{main3}).