Spin Kostka polynomials and vertex operators

Pub Date : 2023-03-19 DOI:10.2140/pjm.2023.325.127
N. Jing, Ning Liu
{"title":"Spin Kostka polynomials and vertex operators","authors":"N. Jing, Ning Liu","doi":"10.2140/pjm.2023.325.127","DOIUrl":null,"url":null,"abstract":"An algebraic iterative formula for the spin Kostka-Foulkes polynomial $K^-_{\\xi\\mu}(t)$ is given using vertex operator realizations of Hall-Littlewood symmetric functions and Schur's Q-functions. Based on the operational formula, more favorable properties are obtained parallel to the Kostka polynomial. In particular, we obtain some formulae for the number of (unshifted) marked tableaux. As an application, we confirmed a conjecture of Aokage on the expansion of the Schur $P$-function in terms of Schur functions. Tables of $K^-_{\\xi\\mu}(t)$ for $|\\xi|\\leq6$ are listed.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2023.325.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An algebraic iterative formula for the spin Kostka-Foulkes polynomial $K^-_{\xi\mu}(t)$ is given using vertex operator realizations of Hall-Littlewood symmetric functions and Schur's Q-functions. Based on the operational formula, more favorable properties are obtained parallel to the Kostka polynomial. In particular, we obtain some formulae for the number of (unshifted) marked tableaux. As an application, we confirmed a conjecture of Aokage on the expansion of the Schur $P$-function in terms of Schur functions. Tables of $K^-_{\xi\mu}(t)$ for $|\xi|\leq6$ are listed.
分享
查看原文
自旋Kostka多项式和顶点算子
利用Hall-Littlewood对称函数和Schur的q -函数的顶点算子实现,给出了自旋Kostka-Foulkes多项式$K^-_{\xi\mu}(t)$的代数迭代公式。基于运算公式,得到了与Kostka多项式平行的更有利的性质。特别地,我们得到了(未移位的)标记表的数目的一些公式。作为应用,我们证实了Aokage关于Schur $P$ -函数用Schur函数展开的一个猜想。下面列出了$|\xi|\leq6$的$K^-_{\xi\mu}(t)$表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信