Another Geometric Interpretation of Cramer’s Rule

Q4 Mathematics
Benjamin W. L. Margolis
{"title":"Another Geometric Interpretation of Cramer’s Rule","authors":"Benjamin W. L. Margolis","doi":"10.1080/0025570X.2023.2234243","DOIUrl":null,"url":null,"abstract":"Summary We develop a geometric interpretation of Cramer’s rule as a generalization of projection onto orthogonal basis vectors using the rows of the adjugate. This interpretation makes connections between elementary linear algebra concepts like the solution to linear equations, inner products, and projections. Such connections are useful for introducing broader concepts related to Hilbert spaces and geometric algebras like Grassman algebra. Such connections were essential for the author’s mathematical education as an engineer.","PeriodicalId":18344,"journal":{"name":"Mathematics Magazine","volume":"96 1","pages":"455 - 462"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0025570X.2023.2234243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Summary We develop a geometric interpretation of Cramer’s rule as a generalization of projection onto orthogonal basis vectors using the rows of the adjugate. This interpretation makes connections between elementary linear algebra concepts like the solution to linear equations, inner products, and projections. Such connections are useful for introducing broader concepts related to Hilbert spaces and geometric algebras like Grassman algebra. Such connections were essential for the author’s mathematical education as an engineer.
克拉默法则的另一种几何解释
我们发展了克拉默规则的几何解释,它是利用共轭的行对正交基向量的投影的推广。这种解释在线性代数的基本概念之间建立了联系,如线性方程的解、内积和投影。这种联系对于引入与希尔伯特空间和几何代数(如格拉斯曼代数)相关的更广泛的概念很有用。作为一名工程师,这种联系对作者的数学教育至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematics Magazine
Mathematics Magazine Mathematics-Mathematics (all)
CiteScore
0.20
自引率
0.00%
发文量
68
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信