Some integral inequalities for operator monotonic functions on Hilbert spaces

IF 0.8 Q2 MATHEMATICS
S. Dragomir
{"title":"Some integral inequalities for operator monotonic functions on Hilbert spaces","authors":"S. Dragomir","doi":"10.1515/spma-2020-0108","DOIUrl":null,"url":null,"abstract":"Abstract Let f be an operator monotonic function on I and A, B∈I (H), the class of all selfadjoint operators with spectra in I. Assume that p : [0.1], →ℝ is non-decreasing on [0, 1]. In this paper we obtained, among others, that for A ≤ B and f an operator monotonic function on I, 0≤∫01p(t)f((1-t)A+tB)dt-∫01p(t)dt∫01f((1-t)A+tB)dt≤14[ p(1)-p(0) ][ f(B)-f(A) ] \\matrix{0 \\hfill & { \\le \\int\\limits_0^1 {p\\left( t \\right)f\\left( {\\left( {1 - t} \\right)A + tB} \\right)dt - \\int\\limits_0^1 {p\\left( t \\right)dt\\int\\limits_0^1 {f\\left( {\\left( {1 - t} \\right)A + tB} \\right)dt} } } } \\hfill \\cr {} \\hfill & { \\le {1 \\over 4}\\left[ {p\\left( 1 \\right) - p\\left( 0 \\right)} \\right]\\left[ {f\\left( B \\right) - f\\left( A \\right)} \\right]} \\hfill \\cr } in the operator order. Several other similar inequalities for either p or f is differentiable, are also provided. Applications for power function and logarithm are given as well.","PeriodicalId":43276,"journal":{"name":"Special Matrices","volume":"8 1","pages":"172 - 180"},"PeriodicalIF":0.8000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/spma-2020-0108","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Matrices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/spma-2020-0108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Let f be an operator monotonic function on I and A, B∈I (H), the class of all selfadjoint operators with spectra in I. Assume that p : [0.1], →ℝ is non-decreasing on [0, 1]. In this paper we obtained, among others, that for A ≤ B and f an operator monotonic function on I, 0≤∫01p(t)f((1-t)A+tB)dt-∫01p(t)dt∫01f((1-t)A+tB)dt≤14[ p(1)-p(0) ][ f(B)-f(A) ] \matrix{0 \hfill & { \le \int\limits_0^1 {p\left( t \right)f\left( {\left( {1 - t} \right)A + tB} \right)dt - \int\limits_0^1 {p\left( t \right)dt\int\limits_0^1 {f\left( {\left( {1 - t} \right)A + tB} \right)dt} } } } \hfill \cr {} \hfill & { \le {1 \over 4}\left[ {p\left( 1 \right) - p\left( 0 \right)} \right]\left[ {f\left( B \right) - f\left( A \right)} \right]} \hfill \cr } in the operator order. Several other similar inequalities for either p or f is differentiable, are also provided. Applications for power function and logarithm are given as well.
Hilbert空间上算子单调函数的一些积分不等式
摘要设f是I上的算子单调函数,A, B∈I (H),是I上的所有谱自伴随算子的类,设p:[0.1],→在[0,1]上不递减。本文得到了对于A≤B和f在I上的算子单调函数,0≤∫01p(t)f((1-t)A+tB)dt-∫01p(t) A+tB)dt≤14[p(1)-p(0)][f(B)-f(A)] \matrix{0 \hfill & { \le \int\limits_0^1 {p\left( t \right)f\left( {\left( {1 - t} \right)A + tB} \right)dt - \int\limits_0^1 {p\left( t \right)dt\int\limits_0^1 {f\left( {\left( {1 - t} \right)A + tB} \right)dt} } } } \hfill \cr {} \hfill & { \le {1 \over 4}\left[ {p\left( 1 \right) - p\left( 0 \right)} \right]\left[ {f\left( B \right) - f\left( A \right)} \right]} \hfill \cr }的算子阶。对于p或f均可微,也给出了其他几个类似的不等式。并给出了幂函数和对数的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Special Matrices
Special Matrices MATHEMATICS-
CiteScore
1.10
自引率
20.00%
发文量
14
审稿时长
8 weeks
期刊介绍: Special Matrices publishes original articles of wide significance and originality in all areas of research involving structured matrices present in various branches of pure and applied mathematics and their noteworthy applications in physics, engineering, and other sciences. Special Matrices provides a hub for all researchers working across structured matrices to present their discoveries, and to be a forum for the discussion of the important issues in this vibrant area of matrix theory. Special Matrices brings together in one place major contributions to structured matrices and their applications. All the manuscripts are considered by originality, scientific importance and interest to a general mathematical audience. The journal also provides secure archiving by De Gruyter and the independent archiving service Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信