Poles of cubic differentials and ends of convex $\mathbb{RP}^2$-surfaces

IF 1.3 1区 数学 Q1 MATHEMATICS
Xin Nie
{"title":"Poles of cubic differentials and ends of convex $\\mathbb{RP}^2$-surfaces","authors":"Xin Nie","doi":"10.4310/jdg/1679503805","DOIUrl":null,"url":null,"abstract":"On any oriented surface, the affine sphere construction gives a one-to-one correspondence between convex $\\mathbb{RP}^2$-structures and holomorphic cubic differentials. Generalizing results of Benoist-Hulin, Loftin and Dumas-Wolf, we show that poles of order less than $3$ of cubic differentials correspond to finite volume ends of convex $\\mathbb{RP}^2$-structures, while poles of order at least $3$ correspond to geodesic or piecewise geodesic boundary components. More specifically, in the latter situation, we prove asymptotic results for the convex $\\mathbb{RP}^2$-structure around the pole in terms of the cubic differential.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2018-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1679503805","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

On any oriented surface, the affine sphere construction gives a one-to-one correspondence between convex $\mathbb{RP}^2$-structures and holomorphic cubic differentials. Generalizing results of Benoist-Hulin, Loftin and Dumas-Wolf, we show that poles of order less than $3$ of cubic differentials correspond to finite volume ends of convex $\mathbb{RP}^2$-structures, while poles of order at least $3$ correspond to geodesic or piecewise geodesic boundary components. More specifically, in the latter situation, we prove asymptotic results for the convex $\mathbb{RP}^2$-structure around the pole in terms of the cubic differential.
三次微分的极点和凸$\mathbb{RP}^2$曲面的端点
在任何有向曲面上,仿射球结构给出了凸$\mathbb{RP}^2结构和全纯三次微分之间的一一对应关系。推广Benoist Hulin、Loftin和Dumas Wolf的结果,我们发现三次微分的阶数小于$3$的极点对应于凸$\mathbb{RP}^2$-结构的有限体积端,而阶数至少为$3$的磁极对应于测地线或分段测地线边界分量。更具体地说,在后一种情况下,我们用三次微分的形式证明了极点周围凸$\mathbb{RP}^2结构的渐近结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信