Moving computational multi-domain method for modelling the flow interaction of multiple moving objects

IF 2.9 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Momoha Nishimura, M. Yamakawa, S. Asao, Seiichi Takeuchi, Mehdi Badri Ghomizad
{"title":"Moving computational multi-domain method for modelling the flow interaction of multiple moving objects","authors":"Momoha Nishimura, M. Yamakawa, S. Asao, Seiichi Takeuchi, Mehdi Badri Ghomizad","doi":"10.21203/rs.3.rs-907888/v1","DOIUrl":null,"url":null,"abstract":"This study proposes a method for modelling the flow interaction of multiple moving objects where the flow field variables are communicated between multiple separate moving computational domains. Instead of using the conventional approach with a single fixed computational domain covering the whole flow field, this method advances the moving computational domain (MCD) method in which the computational domain itself moves in line with the motions of an object inside. The computational domains created around each object move independently, and the flow fields of each domain interact where the flows cross. This eliminates the spatial restriction for simulating multiple moving objects. Firstly, a shock tube test verifies that the overset implementation and grid movement do not adversely affect the results and that there is communication between the grids. A second test case is conducted in which two spheres are crossed, and the forces exerted on one object due to the other’s crossing at a short distance are calculated. The results verify the reliability of this method and show that it is applicable to the flow interaction of multiple moving objects.","PeriodicalId":33737,"journal":{"name":"Advances in Aerodynamics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-907888/v1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

This study proposes a method for modelling the flow interaction of multiple moving objects where the flow field variables are communicated between multiple separate moving computational domains. Instead of using the conventional approach with a single fixed computational domain covering the whole flow field, this method advances the moving computational domain (MCD) method in which the computational domain itself moves in line with the motions of an object inside. The computational domains created around each object move independently, and the flow fields of each domain interact where the flows cross. This eliminates the spatial restriction for simulating multiple moving objects. Firstly, a shock tube test verifies that the overset implementation and grid movement do not adversely affect the results and that there is communication between the grids. A second test case is conducted in which two spheres are crossed, and the forces exerted on one object due to the other’s crossing at a short distance are calculated. The results verify the reliability of this method and show that it is applicable to the flow interaction of multiple moving objects.
多运动物体流动相互作用的运动计算多域方法
本研究提出了一种模拟多运动物体流动相互作用的方法,其中流场变量在多个独立的运动计算域之间传递。该方法取代了传统的单一固定计算域覆盖整个流场的方法,提出了移动计算域(moving computational domain, MCD)方法,该方法使计算域本身随流场内部物体的运动而运动。围绕每个对象创建的计算域独立移动,并且每个域的流场在流交叉处相互作用。这消除了模拟多个移动对象的空间限制。首先,激波管试验验证了超调实现和网格移动对结果没有不利影响,并且网格之间存在通信。第二个测试用例是两个球体交叉,计算其中一个物体在近距离交叉时对另一个物体的作用力。结果验证了该方法的可靠性,表明该方法适用于多运动物体的流动相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
4.30%
发文量
35
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信