{"title":"Model scale investigation of aspects influencing the ice resistance of ships sailing ahead in level ice","authors":"D. Myland, S. Ehlers","doi":"10.1080/09377255.2019.1576390","DOIUrl":null,"url":null,"abstract":"ABSTRACT For a reliable prediction of the total resistance in ice in an early ship design stage, it is of great importance to have knowledge on the different influencing aspects. Three of the quite poorly investigated aspects of ship resistance in ice are evaluated for a contemporary common ice-breaking ship type with model tests in ice: The different components of the total resistance in ice are investigated by tests in pre-sawn ice. The additional resistance of a skeg in the bow area is analysed with model tests in ice with an instrumented skeg. The ship bottom ice coverage is determined by means of an underwater image analysis methodology. The results of these investigations are given and discussed.","PeriodicalId":51883,"journal":{"name":"Ship Technology Research","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09377255.2019.1576390","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ship Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09377255.2019.1576390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 5
Abstract
ABSTRACT For a reliable prediction of the total resistance in ice in an early ship design stage, it is of great importance to have knowledge on the different influencing aspects. Three of the quite poorly investigated aspects of ship resistance in ice are evaluated for a contemporary common ice-breaking ship type with model tests in ice: The different components of the total resistance in ice are investigated by tests in pre-sawn ice. The additional resistance of a skeg in the bow area is analysed with model tests in ice with an instrumented skeg. The ship bottom ice coverage is determined by means of an underwater image analysis methodology. The results of these investigations are given and discussed.