NonPC: Non-parametric clustering algorithm with adaptive noise detecting

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Lin Li, Xiang Chen, Chengyun Song
{"title":"NonPC: Non-parametric clustering algorithm with adaptive noise detecting","authors":"Lin Li, Xiang Chen, Chengyun Song","doi":"10.3233/ida-220427","DOIUrl":null,"url":null,"abstract":"Graph-based clustering performs efficiently for identifying clusters in local and nonlinear data Patterns. The existing methods face the problem of parameter selection, such as the setting of k of the k-nearest neighbor graph and the threshold in noise detection. In this paper, a non-parametric clustering algorithm (NonPC) is proposed to tackle those inherent limitations and improve clustering performance. The weighted natural neighbor graph (wNaNG) is developed to represent the given data without any prior knowledge. What is more, the proposed NonPC method adaptively detects noise data in an unsupervised way based on some attributes extracted from wNaNG. The algorithm works without preliminary parameter settings while automatically identifying clusters with unbalanced densities, arbitrary shapes, and noises. To assess the advantages of the NonPC algorithm, extensive experiments have been conducted compared with some classic and recent clustering methods. The results demonstrate that the proposed NonPC algorithm significantly outperforms the state-of-the-art and well-known algorithms in Adjusted Rand index, Normalized Mutual Information, and Fowlkes-Mallows index aspects.","PeriodicalId":50355,"journal":{"name":"Intelligent Data Analysis","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Data Analysis","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ida-220427","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Graph-based clustering performs efficiently for identifying clusters in local and nonlinear data Patterns. The existing methods face the problem of parameter selection, such as the setting of k of the k-nearest neighbor graph and the threshold in noise detection. In this paper, a non-parametric clustering algorithm (NonPC) is proposed to tackle those inherent limitations and improve clustering performance. The weighted natural neighbor graph (wNaNG) is developed to represent the given data without any prior knowledge. What is more, the proposed NonPC method adaptively detects noise data in an unsupervised way based on some attributes extracted from wNaNG. The algorithm works without preliminary parameter settings while automatically identifying clusters with unbalanced densities, arbitrary shapes, and noises. To assess the advantages of the NonPC algorithm, extensive experiments have been conducted compared with some classic and recent clustering methods. The results demonstrate that the proposed NonPC algorithm significantly outperforms the state-of-the-art and well-known algorithms in Adjusted Rand index, Normalized Mutual Information, and Fowlkes-Mallows index aspects.
NonPC:具有自适应噪声检测的非参数聚类算法
基于图的聚类可以有效地识别局部和非线性数据模式中的聚类。现有的方法都面临着参数选择的问题,如k近邻图中k值的设置、噪声检测中的阈值等。本文提出了一种非参数聚类算法(NonPC)来解决这些固有的局限性,提高聚类性能。在不需要任何先验知识的情况下,提出加权自然邻居图(wNaNG)来表示给定的数据。此外,提出的NonPC方法基于从wNaNG中提取的一些属性,以无监督的方式自适应检测噪声数据。该算法在没有初始参数设置的情况下工作,同时自动识别密度不平衡、任意形状和噪声的集群。为了评估NonPC算法的优势,我们进行了大量的实验,并与一些经典和最新的聚类方法进行了比较。结果表明,所提出的NonPC算法在调整Rand指数、归一化互信息和Fowlkes-Mallows指数方面显著优于最先进和知名的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Intelligent Data Analysis
Intelligent Data Analysis 工程技术-计算机:人工智能
CiteScore
2.20
自引率
5.90%
发文量
85
审稿时长
3.3 months
期刊介绍: Intelligent Data Analysis provides a forum for the examination of issues related to the research and applications of Artificial Intelligence techniques in data analysis across a variety of disciplines. These techniques include (but are not limited to): all areas of data visualization, data pre-processing (fusion, editing, transformation, filtering, sampling), data engineering, database mining techniques, tools and applications, use of domain knowledge in data analysis, big data applications, evolutionary algorithms, machine learning, neural nets, fuzzy logic, statistical pattern recognition, knowledge filtering, and post-processing. In particular, papers are preferred that discuss development of new AI related data analysis architectures, methodologies, and techniques and their applications to various domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信