K. Frankiewicz, A. Oskolski, J. Reduron, Ł. Banasiak, J. Reyes‐Betancort, P. Trzeciak, K. Spalik
{"title":"Stem anatomy of Apioideae (Apiaceae): effects of habit and reproductive strategy","authors":"K. Frankiewicz, A. Oskolski, J. Reduron, Ł. Banasiak, J. Reyes‐Betancort, P. Trzeciak, K. Spalik","doi":"10.1163/22941932-bja10078","DOIUrl":null,"url":null,"abstract":"\nApioideae is the biggest and the most diverse of four subfamilies recognised within Apiaceae. Except for a few, likely derived, woody clades, most representatives of this subfamily are herbaceous. In the present study, we assessed stem anatomy of 87, mostly therophytic and hemicryptophytic, species from at least 20 distinct lineages of Apioideae, and juxtaposed them with 67 species from our previous anatomical projects also focused on this subfamily. Comparing our data with the literature, we found that wood anatomy does not allow for a distinction between apioids and their close relatives (Azorelloideae, Saniculoideae), but more distantly related Mackinlayoideae differ from Apioideae in their perforation plate type. Vessel element and fibre length, and vessel diameter were positively correlated with plant height: phenomena already reported in literature. Similar pattern was retrieved for vertical intervessel pit diameter. Wood ground tissue in apioids ranges from entirely fibrous to parenchymatous. The shortening of internodes seems to favour the formation of parenchymatic ground tissue, whereas the early shift to flowering promotes the deposition of fibrous wood in monocarpic species. These results support a hypothesis on interdependence among internode length, reproductive strategy, and wood ground tissue type.","PeriodicalId":55037,"journal":{"name":"IAWA Journal","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAWA Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1163/22941932-bja10078","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 1
Abstract
Apioideae is the biggest and the most diverse of four subfamilies recognised within Apiaceae. Except for a few, likely derived, woody clades, most representatives of this subfamily are herbaceous. In the present study, we assessed stem anatomy of 87, mostly therophytic and hemicryptophytic, species from at least 20 distinct lineages of Apioideae, and juxtaposed them with 67 species from our previous anatomical projects also focused on this subfamily. Comparing our data with the literature, we found that wood anatomy does not allow for a distinction between apioids and their close relatives (Azorelloideae, Saniculoideae), but more distantly related Mackinlayoideae differ from Apioideae in their perforation plate type. Vessel element and fibre length, and vessel diameter were positively correlated with plant height: phenomena already reported in literature. Similar pattern was retrieved for vertical intervessel pit diameter. Wood ground tissue in apioids ranges from entirely fibrous to parenchymatous. The shortening of internodes seems to favour the formation of parenchymatic ground tissue, whereas the early shift to flowering promotes the deposition of fibrous wood in monocarpic species. These results support a hypothesis on interdependence among internode length, reproductive strategy, and wood ground tissue type.
期刊介绍:
The IAWA Journal is the only international periodical fully devoted to structure, function, identification and utilisation of wood and bark in trees, shrubs, lianas, palms, bamboo and herbs. Many papers are of a multidisciplinary nature, linking