IMPLEMENTASI FUZZY C-MEAN DAN ALGORITMA PARTICLE SWARM OPTIMIZATION UNTUK CLUSTERING KABUPATEN/KOTA DI INDONESIA BERDASARKAN INDIKATOR INDEKS PEMBANGUNAN MANUSIA

I. Dwiguna, G. Gandhiadi, L. Harini
{"title":"IMPLEMENTASI FUZZY C-MEAN DAN ALGORITMA PARTICLE SWARM OPTIMIZATION UNTUK CLUSTERING KABUPATEN/KOTA DI INDONESIA BERDASARKAN INDIKATOR INDEKS PEMBANGUNAN MANUSIA","authors":"I. Dwiguna, G. Gandhiadi, L. Harini","doi":"10.24843/mtk.2022.v11.i03.p380","DOIUrl":null,"url":null,"abstract":"This research is aimed to determine conduct clustering in accordance with the conditions of districts / cities throughout Indonesia based on the IPM indicator and to determine the performance comparison of Fuzzy C-Means using particle swarm optimization compared to ordinary fuzzy c mean. The study uses 514 district / city data in Indonesia based on four IPM indicators. The research show 4 clusters that describe the condition of the Indonesian region and based on the results of cluster validation shows that there are differences in the ordinary Fuzzy C-Means mean algorithm and Fuzzy C-Means using particle swarm optimization.","PeriodicalId":11600,"journal":{"name":"E-Jurnal Matematika","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"E-Jurnal Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24843/mtk.2022.v11.i03.p380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This research is aimed to determine conduct clustering in accordance with the conditions of districts / cities throughout Indonesia based on the IPM indicator and to determine the performance comparison of Fuzzy C-Means using particle swarm optimization compared to ordinary fuzzy c mean. The study uses 514 district / city data in Indonesia based on four IPM indicators. The research show 4 clusters that describe the condition of the Indonesian region and based on the results of cluster validation shows that there are differences in the ordinary Fuzzy C-Means mean algorithm and Fuzzy C-Means using particle swarm optimization.
本研究的目的是基于IPM指标,确定根据印度尼西亚各地区的/城市的情况进行聚类,并确定使用粒子群优化的模糊c - means与普通模糊c - means的性能比较。该研究基于四个IPM指标,使用了印度尼西亚514个地区/城市的数据。研究得到了描述印尼地区情况的4个聚类,基于聚类验证的结果表明,普通的模糊C-Means均值算法与使用粒子群优化的模糊C-Means算法存在差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
34
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信