Myoungin Shin, Youngbin Cho, Youngmin Choo, Keunhwa Lee, Jungpyo Hong, Seongil Kim, W. Hong
{"title":"Analysis on performance of grid-free compressive beamforming based on experiment","authors":"Myoungin Shin, Youngbin Cho, Youngmin Choo, Keunhwa Lee, Jungpyo Hong, Seongil Kim, W. Hong","doi":"10.7776/ASK.2020.39.3.179","DOIUrl":null,"url":null,"abstract":"In this paper, we estimated the Direction of Arrival (DOA) using Conventional BeamForming (CBF), adaptive beamforming and compressive beamforming. Minimum Variance Distortionless Response (MVDR) and Multiple Signal Classification (MUSIC) are used as the adaptive beamforming, and grid-free compressive sensing is applied for the compressive sensing beamforming. Theoretical background and limitations of each technique are introduced, and the performance of each technique is compared through simulation and real experiments. The real experiments are conducted in the presence of reflected signal, transmitting a sound using two speakers and receiving acoustic data through a linear array consisting of eight microphones. Simulation and experimental results show that the adaptive beamforming and the grid-free compressive beamforming have a higher resolution than conventional beamforming when there are uncorrelated signals. On the other hand, the performance of the adaptive beamforming is degraded by the reflected signals whereas the grid-free compressive beamforming still improves the conventional beamforming resolution regardless of reflected signal presence.","PeriodicalId":42689,"journal":{"name":"Journal of the Acoustical Society of Korea","volume":"39 1","pages":"179-190"},"PeriodicalIF":0.2000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of Korea","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7776/ASK.2020.39.3.179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we estimated the Direction of Arrival (DOA) using Conventional BeamForming (CBF), adaptive beamforming and compressive beamforming. Minimum Variance Distortionless Response (MVDR) and Multiple Signal Classification (MUSIC) are used as the adaptive beamforming, and grid-free compressive sensing is applied for the compressive sensing beamforming. Theoretical background and limitations of each technique are introduced, and the performance of each technique is compared through simulation and real experiments. The real experiments are conducted in the presence of reflected signal, transmitting a sound using two speakers and receiving acoustic data through a linear array consisting of eight microphones. Simulation and experimental results show that the adaptive beamforming and the grid-free compressive beamforming have a higher resolution than conventional beamforming when there are uncorrelated signals. On the other hand, the performance of the adaptive beamforming is degraded by the reflected signals whereas the grid-free compressive beamforming still improves the conventional beamforming resolution regardless of reflected signal presence.