On roman domination number of functigraph and its complement

IF 0.1 Q4 MATHEMATICS
E. Vatandoost, Athena Shaminezhad
{"title":"On roman domination number of functigraph and its complement","authors":"E. Vatandoost, Athena Shaminezhad","doi":"10.1080/25742558.2020.1858560","DOIUrl":null,"url":null,"abstract":"Abstract Let be a graph and be a function where for every vertex with there is a vertex where Then is a Roman dominating function or a of The weight of is The minimum weight of all is called the Roman domination number of denoted by Let be a graph with and G' be a copy of with Then a functigraph with function is denoted by its vertices and edges are and respectively. This paper deals with the Roman domination number of the functigraph and its complement. We present a general bound where is a permutation. Also, the Roman domination number of some special graphs are considered. We obtain a general bound of and we show that this bound is sharp.","PeriodicalId":92618,"journal":{"name":"Cogent mathematics & statistics","volume":"7 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/25742558.2020.1858560","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent mathematics & statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25742558.2020.1858560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Let be a graph and be a function where for every vertex with there is a vertex where Then is a Roman dominating function or a of The weight of is The minimum weight of all is called the Roman domination number of denoted by Let be a graph with and G' be a copy of with Then a functigraph with function is denoted by its vertices and edges are and respectively. This paper deals with the Roman domination number of the functigraph and its complement. We present a general bound where is a permutation. Also, the Roman domination number of some special graphs are considered. We obtain a general bound of and we show that this bound is sharp.
关于函子图的罗马控制数及其补码
摘要设为图和函数,其中每个顶点都有一个顶点,其中Then是罗马控制函数或的a。的权重为。所有函数的最小权重称为的罗马控制数。设为图,G'是的副本。则函数的函数图由其顶点和边分别表示。本文讨论了函子图及其补码的罗马支配数。我们给出了一个通界,其中是一个置换。此外,还考虑了一些特殊图的罗马支配数。我们得到了的一般界,并证明了这个界是尖锐的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信