Correlations in totally symmetric self‐complementary plane partitions

IF 1.1 Q1 MATHEMATICS
Arvind Ayyer, S. Chhita
{"title":"Correlations in totally symmetric self‐complementary plane partitions","authors":"Arvind Ayyer, S. Chhita","doi":"10.1112/tlm3.12039","DOIUrl":null,"url":null,"abstract":"Totally symmetric self‐complementary plane partitions (TSSCPPs) are boxed plane partitions with the maximum possible symmetry. We use the well‐known representation of TSSCPPs as a dimer model on a honeycomb graph enclosed in 1/12 of a hexagon with free boundary to express them as perfect matchings of a family of non‐bipartite planar graphs. Our main result is that the edges of the TSSCPPs form a Pfaffian point process, for which we give explicit formulas for the inverse Kasteleyn matrix. Preliminary analysis of these correlations are then used to give a precise conjecture for the limit shape of TSSCPPs in the scaling limit.","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":"8 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlm3.12039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Totally symmetric self‐complementary plane partitions (TSSCPPs) are boxed plane partitions with the maximum possible symmetry. We use the well‐known representation of TSSCPPs as a dimer model on a honeycomb graph enclosed in 1/12 of a hexagon with free boundary to express them as perfect matchings of a family of non‐bipartite planar graphs. Our main result is that the edges of the TSSCPPs form a Pfaffian point process, for which we give explicit formulas for the inverse Kasteleyn matrix. Preliminary analysis of these correlations are then used to give a precise conjecture for the limit shape of TSSCPPs in the scaling limit.
完全对称自互补平面分区中的相关关系
完全对称自互补平面分区(TSSCPPs)是具有最大可能对称性的装箱平面分区。我们使用众所周知的TSSCPPs的二聚体模型,在一个自由边界的六边形的1/12的蜂窝图上表示它们为一类非二部平面图的完美匹配。我们的主要结果是TSSCPPs的边形成了一个Pfaffian点过程,对此我们给出了逆Kasteleyn矩阵的显式公式。这些相关性的初步分析,然后用于给出一个精确的猜想TSSCPPs的极限形状在缩放极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
41 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信