Rita K. McCreesh, K. Fox-Dobbs, P. Wimberger, Kent Woodruff, G. Holtgrieve, Thomas Pool
{"title":"Reintroduced Beavers Rapidly Influence the Storage and Biogeochemistry of Sediments in Headwater Streams (Methow River, Washington)","authors":"Rita K. McCreesh, K. Fox-Dobbs, P. Wimberger, Kent Woodruff, G. Holtgrieve, Thomas Pool","doi":"10.3955/046.093.0203","DOIUrl":null,"url":null,"abstract":"Abstract North American beavers (Castor canadensis) were targeted within North American headwater landscapes by European loggers and fur traders in the 19th century, reducing beaver populations to near extinction by 1900. The extirpation of beavers from river networks has had profound effects on riparian zones, including channel geomorphology, temperature regimes, sediment storage, channel-floodplain connectivity, carbon storage and nutrient dynamics. Consequently, reintroducing beavers has been provisionally implemented as a restoration approach within some watersheds. We characterized how reintroduced beavers influence the short-term dynamics of organic material accumulation within the sediments of 1st and 2nd order streams within the Methow River watershed of Washington State. In collaboration with the Methow Beaver Project, we identified four creeks where they had reintroduced beavers within the past five years, as well as a control non-beaver pond. At each site, we collected shallow sediment cores from upstream, downstream, and within beaver ponds, and then measured organic material via elemental analyses of sediment carbon (%C) and nitrogen (%N) content. We compared those samples to sediments accumulated in local pond areas not created by beaver activity. Our results show greater organic C and N content of sediments in beaver ponds than non-beaver ponds. C/N ratios indicate elevated accumulation of allochthonous organic material in beaver impoundment sediments that would otherwise not be integrated into headwater streams from the terrestrial landscape. These findings suggest that the reintroduction of beavers could be an effective means to promote restoration of whole ecosystem function.","PeriodicalId":49743,"journal":{"name":"Northwest Science","volume":"93 1","pages":"112 - 121"},"PeriodicalIF":0.5000,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Northwest Science","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3955/046.093.0203","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract North American beavers (Castor canadensis) were targeted within North American headwater landscapes by European loggers and fur traders in the 19th century, reducing beaver populations to near extinction by 1900. The extirpation of beavers from river networks has had profound effects on riparian zones, including channel geomorphology, temperature regimes, sediment storage, channel-floodplain connectivity, carbon storage and nutrient dynamics. Consequently, reintroducing beavers has been provisionally implemented as a restoration approach within some watersheds. We characterized how reintroduced beavers influence the short-term dynamics of organic material accumulation within the sediments of 1st and 2nd order streams within the Methow River watershed of Washington State. In collaboration with the Methow Beaver Project, we identified four creeks where they had reintroduced beavers within the past five years, as well as a control non-beaver pond. At each site, we collected shallow sediment cores from upstream, downstream, and within beaver ponds, and then measured organic material via elemental analyses of sediment carbon (%C) and nitrogen (%N) content. We compared those samples to sediments accumulated in local pond areas not created by beaver activity. Our results show greater organic C and N content of sediments in beaver ponds than non-beaver ponds. C/N ratios indicate elevated accumulation of allochthonous organic material in beaver impoundment sediments that would otherwise not be integrated into headwater streams from the terrestrial landscape. These findings suggest that the reintroduction of beavers could be an effective means to promote restoration of whole ecosystem function.
期刊介绍:
The pages of Northwest Science are open to original and fundamental research in the basic, applied, and social sciences. All submissions are refereed by at least two qualified peer reviewers. Papers are welcome from authors outside of the Pacific Northwest if the topic is suitable to our regional audience.