Point Shear Wave Elastography and 2-Dimensional Shear Wave Elastography as a Non-Invasive Method in Differentiating Benign from Malignant Liver Lesions
E. Nacheva-Georgieva, D. Doykov, V. Andonov, K. Doykova, Silviya Bogdanova Tsvetkova
{"title":"Point Shear Wave Elastography and 2-Dimensional Shear Wave Elastography as a Non-Invasive Method in Differentiating Benign from Malignant Liver Lesions","authors":"E. Nacheva-Georgieva, D. Doykov, V. Andonov, K. Doykova, Silviya Bogdanova Tsvetkova","doi":"10.3390/gastroent13030030","DOIUrl":null,"url":null,"abstract":"Non-invasive, ultrasound-based methods for visualizing and measuring tissue elasticity are becoming more and more common in routine daily practice. An accurate diagnosis of malignant and benign tumors is essential for determining the appropriate treatment. Despite the wide use of imaging techniques, the investigation for assessing the elasticity of focal liver lesions and their differentiating is still continuing. Aim: To investigate the value of point shear wave elastography (pSWE) and two-dimensional shear wave elastography (2D-SWE) for the differential diagnosis of benign and malignant focal liver lesions. Materials and Methods: A total of 125 adult patients were included from the Clinic of Gastroenterology of University Hospital Kaspela, Plovdiv city, Bulgaria, in the period from January 2021 to July 2022. Participants were divided into two groups—with benign (hemangiomas) and malignant focal liver lesions (hepatocellular carcinoma). The group with benign lesions included 63 patients and the group with malignant focal liver lesions (FLLs)—62 patients. Point shear wave elastography (pSWE) and two-dimensional shear wave elastography (2D-SWE) integrated in the same ultrasound machine (Esaote MyLab™ 9Exp) were performed for each lesion. Results: Malignant FLLs have significantly higher stiffness in both pSWE (2.52–4.32 m/s, 90% CI: 2.37 to 2.68, 90% CI: 4.19 to 4.55) and 2d-SWE (2.52–4.43 m/s, 90% CI: 2.31 to 2.65, 90% CI: 4.27 to 4.61). Conclusion: 2D-SWE and pSWE could provide complementary data about FLLs. They enable us to conveniently and easily obtain accurate stiffness information of FLLs.","PeriodicalId":43586,"journal":{"name":"Gastroenterology Insights","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gastroenterology Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/gastroent13030030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Non-invasive, ultrasound-based methods for visualizing and measuring tissue elasticity are becoming more and more common in routine daily practice. An accurate diagnosis of malignant and benign tumors is essential for determining the appropriate treatment. Despite the wide use of imaging techniques, the investigation for assessing the elasticity of focal liver lesions and their differentiating is still continuing. Aim: To investigate the value of point shear wave elastography (pSWE) and two-dimensional shear wave elastography (2D-SWE) for the differential diagnosis of benign and malignant focal liver lesions. Materials and Methods: A total of 125 adult patients were included from the Clinic of Gastroenterology of University Hospital Kaspela, Plovdiv city, Bulgaria, in the period from January 2021 to July 2022. Participants were divided into two groups—with benign (hemangiomas) and malignant focal liver lesions (hepatocellular carcinoma). The group with benign lesions included 63 patients and the group with malignant focal liver lesions (FLLs)—62 patients. Point shear wave elastography (pSWE) and two-dimensional shear wave elastography (2D-SWE) integrated in the same ultrasound machine (Esaote MyLab™ 9Exp) were performed for each lesion. Results: Malignant FLLs have significantly higher stiffness in both pSWE (2.52–4.32 m/s, 90% CI: 2.37 to 2.68, 90% CI: 4.19 to 4.55) and 2d-SWE (2.52–4.43 m/s, 90% CI: 2.31 to 2.65, 90% CI: 4.27 to 4.61). Conclusion: 2D-SWE and pSWE could provide complementary data about FLLs. They enable us to conveniently and easily obtain accurate stiffness information of FLLs.