Quantum $q$-Langlands Correspondence

Q2 Mathematics
Mina Aganagic, E. Frenkel, A. Okounkov
{"title":"Quantum $q$-Langlands Correspondence","authors":"Mina Aganagic, E. Frenkel, A. Okounkov","doi":"10.1090/MOSC/278","DOIUrl":null,"url":null,"abstract":"We formulate a two-parameter generalization of the geometric Langlands correspondence, which we prove for all simply-laced Lie algebras. It identifies the q-conformal blocks of the quantum affine algebra and the deformed W-algebra associated to two Langlands dual Lie algebras. Our proof relies on recent results in quantum K-theory of the Nakajima quiver varieties. The physical origin of the correspondence is the 6d little string theory. The quantum Langlands correspondence emerges in the limit in which the 6d string theory becomes the 6d conformal field theory with (2,0) supersymmetry.","PeriodicalId":37924,"journal":{"name":"Transactions of the Moscow Mathematical Society","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/MOSC/278","citationCount":"88","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Moscow Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/MOSC/278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 88

Abstract

We formulate a two-parameter generalization of the geometric Langlands correspondence, which we prove for all simply-laced Lie algebras. It identifies the q-conformal blocks of the quantum affine algebra and the deformed W-algebra associated to two Langlands dual Lie algebras. Our proof relies on recent results in quantum K-theory of the Nakajima quiver varieties. The physical origin of the correspondence is the 6d little string theory. The quantum Langlands correspondence emerges in the limit in which the 6d string theory becomes the 6d conformal field theory with (2,0) supersymmetry.
Quantum$q$-Langlands通信
我们给出了几何Langlands对应关系的一个双参数推广,我们证明了它适用于所有的简单格李代数。它识别了与两个Langlands对偶李代数相关的量子仿射代数和变形W代数的q-共形块。我们的证明依赖于中岛箭袋变种的量子K理论的最新结果。对应关系的物理起源是6d小弦论。量子Langlands对应关系出现在6d弦理论变成具有(2,0)超对称性的6d共形场论的极限中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transactions of the Moscow Mathematical Society
Transactions of the Moscow Mathematical Society Mathematics-Mathematics (miscellaneous)
自引率
0.00%
发文量
19
期刊介绍: This journal, a translation of Trudy Moskovskogo Matematicheskogo Obshchestva, contains the results of original research in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信