{"title":"Effects of Volute Structure on Energy Performance and Rotor Operational Stability of Molten Salt Pumps","authors":"Q. Li, R. Zhang, H. Xu","doi":"10.47176/jafm.16.08.1741","DOIUrl":null,"url":null,"abstract":"A double-volute molten salt pump with two outlet pipes is proposed based on the original pump model. A numerical approach coupling finite element analysis and computational fluid dynamics (CFD) is implemented to investigate the operational stability and energy performance of two molten salt centrifugal pumps for high-temperature molten salt. The entropy production of the single-volute and double-volute molten salt pumps is investigated. The effects of the volute structures on the mechanical behavior of the impeller and shaft are considered. According to the findings, the local entropy production in the molten salt pump is dominated by the local pulsating entropy production (Spro-T), with the double-volute scheme achieving reduced energy loss. A visualization of the flow field and the local entropy production rate (LEPR) distributions indicate that the LEPR is positively correlated with the complexity of the flow, and higher levels of turbulence intensity lead to greater LEPR. The double-volute scheme enhances the complexity of the flow in the impeller, resulting in an increase in the LEPR compared with the single-volute design. However, the LEPR in the whole double-volute molten salt pump is reduced compared with the single-volute design. It is discovered that the double-volute molten salt pump experiences a less radial hydraulic force. Although the double-volute design has a slightly higher maximum equivalent stress on the impeller than the single-volute scheme, the rotor deformation is significantly less. In general, the double-volute scheme reduces energy loss and ensures better structural stability.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.16.08.1741","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
A double-volute molten salt pump with two outlet pipes is proposed based on the original pump model. A numerical approach coupling finite element analysis and computational fluid dynamics (CFD) is implemented to investigate the operational stability and energy performance of two molten salt centrifugal pumps for high-temperature molten salt. The entropy production of the single-volute and double-volute molten salt pumps is investigated. The effects of the volute structures on the mechanical behavior of the impeller and shaft are considered. According to the findings, the local entropy production in the molten salt pump is dominated by the local pulsating entropy production (Spro-T), with the double-volute scheme achieving reduced energy loss. A visualization of the flow field and the local entropy production rate (LEPR) distributions indicate that the LEPR is positively correlated with the complexity of the flow, and higher levels of turbulence intensity lead to greater LEPR. The double-volute scheme enhances the complexity of the flow in the impeller, resulting in an increase in the LEPR compared with the single-volute design. However, the LEPR in the whole double-volute molten salt pump is reduced compared with the single-volute design. It is discovered that the double-volute molten salt pump experiences a less radial hydraulic force. Although the double-volute design has a slightly higher maximum equivalent stress on the impeller than the single-volute scheme, the rotor deformation is significantly less. In general, the double-volute scheme reduces energy loss and ensures better structural stability.
期刊介绍:
The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .