Retinoic acid, RARs and early development.

IF 3.6 4区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Journal of molecular endocrinology Pub Date : 2022-10-11 Print Date: 2022-11-01 DOI:10.1530/JME-22-0041
Marie Berenguer, Gregg Duester
{"title":"Retinoic acid, RARs and early development.","authors":"Marie Berenguer,&nbsp;Gregg Duester","doi":"10.1530/JME-22-0041","DOIUrl":null,"url":null,"abstract":"<p><p>Vitamin A (retinol) is an important nutrient for embryonic development and adult health. Early studies identified retinoic acid (RA) as a metabolite of retinol, however, its importance was not apparent. Later, it was observed that RA treatment of vertebrate embryos had teratogenic effects on limb development. Subsequently, the discovery of nuclear RA receptors (RARs) revealed that RA controls gene expression directly at the transcriptional level through a process referred to as RA signaling. This important discovery led to further studies demonstrating that RA and RARs are required for normal embryonic development. The determination of RA function during normal development has been challenging as RA gain-of-function studies often lead to conclusions about normal development that conflict with RAR or RA loss-of-function studies. However, genetic loss-of-function studies have identified direct target genes of endogenous RA/RAR that are required for normal development of specific tissues. Thus, genetic loss-of-function studies that eliminate RARs or RA-generating enzymes have been instrumental in revealing that RA signaling is required for normal early development of many organs and tissues, including the hindbrain, posterior body axis, somites, spinal cord, forelimbs, heart, and eye.</p>","PeriodicalId":16570,"journal":{"name":"Journal of molecular endocrinology","volume":"1 1","pages":"T59-T67"},"PeriodicalIF":3.6000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9561040/pdf/","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JME-22-0041","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 10

Abstract

Vitamin A (retinol) is an important nutrient for embryonic development and adult health. Early studies identified retinoic acid (RA) as a metabolite of retinol, however, its importance was not apparent. Later, it was observed that RA treatment of vertebrate embryos had teratogenic effects on limb development. Subsequently, the discovery of nuclear RA receptors (RARs) revealed that RA controls gene expression directly at the transcriptional level through a process referred to as RA signaling. This important discovery led to further studies demonstrating that RA and RARs are required for normal embryonic development. The determination of RA function during normal development has been challenging as RA gain-of-function studies often lead to conclusions about normal development that conflict with RAR or RA loss-of-function studies. However, genetic loss-of-function studies have identified direct target genes of endogenous RA/RAR that are required for normal development of specific tissues. Thus, genetic loss-of-function studies that eliminate RARs or RA-generating enzymes have been instrumental in revealing that RA signaling is required for normal early development of many organs and tissues, including the hindbrain, posterior body axis, somites, spinal cord, forelimbs, heart, and eye.

维甲酸、RARs和早期发育。
维生素A(视黄醇)是胚胎发育和成人健康的重要营养素。早期的研究发现视黄酸(RA)是视黄醇的代谢物,但其重要性并不明显。后来,观察到脊椎动物胚胎的RA治疗对肢体发育有致畸作用。随后,核RA受体(RARs)的发现表明,RA通过称为RA信号传导的过程直接在转录水平上控制基因表达。这一重要发现导致进一步的研究表明RA和RARs是正常胚胎发育所必需的。正常发育期间RA功能的确定一直具有挑战性,因为RA功能获得研究经常得出与RAR或RA功能丧失研究相冲突的正常发育结论。然而,基因功能缺失研究已经确定了内源性RA/RAR的直接靶基因,这些基因是特定组织正常发育所必需的。因此,消除RARs或RA生成酶的基因功能丧失研究有助于揭示RA信号是许多器官和组织正常早期发育所必需的,包括后脑、后体轴、体突、脊髓、前肢、心脏和眼睛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of molecular endocrinology
Journal of molecular endocrinology 医学-内分泌学与代谢
CiteScore
6.90
自引率
0.00%
发文量
96
审稿时长
1 months
期刊介绍: The Journal of Molecular Endocrinology is an official journal of the Society for Endocrinology and is endorsed by the European Society of Endocrinology and the Endocrine Society of Australia. Journal of Molecular Endocrinology is a leading global journal that publishes original research articles and reviews. The journal focuses on molecular and cellular mechanisms in endocrinology, including: gene regulation, cell biology, signalling, mutations, transgenics, hormone-dependant cancers, nuclear receptors, and omics. Basic and pathophysiological studies at the molecule and cell level are considered, as well as human sample studies where this is the experimental model of choice. Technique studies including CRISPR or gene editing are also encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信