Analyzing omics data by feature combinations based on kernel functions.

IF 0.9 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Chao Li, Tianxiang Wang, Xiaohui Lin
{"title":"Analyzing omics data by feature combinations based on kernel functions.","authors":"Chao Li, Tianxiang Wang, Xiaohui Lin","doi":"10.1142/S021972002350021X","DOIUrl":null,"url":null,"abstract":"<p><p>Defining meaningful feature (molecule) combinations can enhance the study of disease diagnosis and prognosis. However, feature combinations are complex and various in biosystems, and the existing methods examine the feature cooperation in a single, fixed pattern for all feature pairs, such as linear combination. To identify the appropriate combination between two features and evaluate feature combination more comprehensively, this paper adopts kernel functions to study feature relationships and proposes a new omics data analysis method KF-[Formula: see text]-TSP. Besides linear combination, KF-[Formula: see text]-TSP also explores the nonlinear combination of features, and allows hybridizing multiple kernel functions to evaluate feature interaction from multiple views. KF-[Formula: see text]-TSP selects [Formula: see text] > 0 top-scoring pairs to build an ensemble classifier. Experimental results show that KF-[Formula: see text]-TSP with multiple kernel functions which evaluates feature combinations from multiple views is better than that with only one kernel function. Meanwhile, KF-[Formula: see text]-TSP performs better than TSP family algorithms and the previous methods based on conversion strategy in most cases. It performs similarly to the popular machine learning methods in omics data analysis, but involves fewer feature pairs. In the procedure of physiological and pathological changes, molecular interactions can be both linear and nonlinear. Hence, KF-[Formula: see text]-TSP, which can measure molecular combination from multiple perspectives, can help to mine information closely related to physiological and pathological changes and study disease mechanism.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":"1 1","pages":"2350021"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S021972002350021X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/18 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Defining meaningful feature (molecule) combinations can enhance the study of disease diagnosis and prognosis. However, feature combinations are complex and various in biosystems, and the existing methods examine the feature cooperation in a single, fixed pattern for all feature pairs, such as linear combination. To identify the appropriate combination between two features and evaluate feature combination more comprehensively, this paper adopts kernel functions to study feature relationships and proposes a new omics data analysis method KF-[Formula: see text]-TSP. Besides linear combination, KF-[Formula: see text]-TSP also explores the nonlinear combination of features, and allows hybridizing multiple kernel functions to evaluate feature interaction from multiple views. KF-[Formula: see text]-TSP selects [Formula: see text] > 0 top-scoring pairs to build an ensemble classifier. Experimental results show that KF-[Formula: see text]-TSP with multiple kernel functions which evaluates feature combinations from multiple views is better than that with only one kernel function. Meanwhile, KF-[Formula: see text]-TSP performs better than TSP family algorithms and the previous methods based on conversion strategy in most cases. It performs similarly to the popular machine learning methods in omics data analysis, but involves fewer feature pairs. In the procedure of physiological and pathological changes, molecular interactions can be both linear and nonlinear. Hence, KF-[Formula: see text]-TSP, which can measure molecular combination from multiple perspectives, can help to mine information closely related to physiological and pathological changes and study disease mechanism.

基于核函数的组学数据特征组合分析
定义有意义的特征(分子)组合可以加强对疾病诊断和预后的研究。然而,在生物系统中,特征组合是复杂而多样的,现有的方法以单一的、固定的模式检查所有特征对的特征协作,例如线性组合。为了识别两个特征之间的适当组合并更全面地评估特征组合,本文采用核函数来研究特征关系,并提出了一种新的组学数据分析方法KF-[公式:见正文]-TSP。除了线性组合,KF-[公式:见正文]-TSP还探索了特征的非线性组合,并允许混合多个核函数来从多个视图评估特征交互。KF-[公式:见正文]-TSP选择[公式:看正文]>0个得分最高的对来构建集成分类器。实验结果表明,具有多个核函数的KF-[公式:见正文]-TSP从多个角度评估特征组合,优于仅具有一个核函数。同时,KF-[公式:见正文]-TSP在大多数情况下都优于TSP族算法和以前基于转换策略的方法。它的性能与组学数据分析中流行的机器学习方法类似,但涉及的特征对较少。在生理和病理变化过程中,分子相互作用既可以是线性的,也可以是非线性的。因此,KF-[公式:见正文]-TSP可以从多个角度测量分子组合,有助于挖掘与生理病理变化密切相关的信息,研究疾病机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Bioinformatics and Computational Biology
Journal of Bioinformatics and Computational Biology MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
2.10
自引率
0.00%
发文量
57
期刊介绍: The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information. The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信