{"title":"Stability of the tangent bundle through conifold transitions","authors":"Tristan Collins, Sebastien Picard, Shing-Tung Yau","doi":"10.1002/cpa.22135","DOIUrl":null,"url":null,"abstract":"<p>Let <i>X</i> be a compact, Kähler, Calabi-Yau threefold and suppose <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>↦</mo>\n <munder>\n <mi>X</mi>\n <mo>̲</mo>\n </munder>\n <mo>⇝</mo>\n <msub>\n <mi>X</mi>\n <mi>t</mi>\n </msub>\n </mrow>\n <annotation>$X\\mapsto \\underline{X}\\leadsto X_t$</annotation>\n </semantics></math> , for <math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>∈</mo>\n <mi>Δ</mi>\n </mrow>\n <annotation>$t\\in \\Delta$</annotation>\n </semantics></math>, is a conifold transition obtained by contracting finitely many disjoint <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(-1,-1)$</annotation>\n </semantics></math> curves in <i>X</i> and then smoothing the resulting ordinary double point singularities. We show that, for <math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>t</mi>\n <mo>|</mo>\n <mo>≪</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$|t|\\ll 1$</annotation>\n </semantics></math> sufficiently small, the tangent bundle <math>\n <semantics>\n <mrow>\n <msup>\n <mi>T</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mn>0</mn>\n </mrow>\n </msup>\n <msub>\n <mi>X</mi>\n <mi>t</mi>\n </msub>\n </mrow>\n <annotation>$T^{1,0}X_{t}$</annotation>\n </semantics></math> admits a Hermitian-Yang-Mills metric <math>\n <semantics>\n <msub>\n <mi>H</mi>\n <mi>t</mi>\n </msub>\n <annotation>$H_t$</annotation>\n </semantics></math> with respect to the conformally balanced metrics constructed by Fu-Li-Yau. Furthermore, we describe the behavior of <math>\n <semantics>\n <msub>\n <mi>H</mi>\n <mi>t</mi>\n </msub>\n <annotation>$H_t$</annotation>\n </semantics></math> near the vanishing cycles of <math>\n <semantics>\n <msub>\n <mi>X</mi>\n <mi>t</mi>\n </msub>\n <annotation>$X_t$</annotation>\n </semantics></math> as <math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>→</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$t\\rightarrow 0$</annotation>\n </semantics></math>.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22135","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 14
Abstract
Let X be a compact, Kähler, Calabi-Yau threefold and suppose , for , is a conifold transition obtained by contracting finitely many disjoint curves in X and then smoothing the resulting ordinary double point singularities. We show that, for sufficiently small, the tangent bundle admits a Hermitian-Yang-Mills metric with respect to the conformally balanced metrics constructed by Fu-Li-Yau. Furthermore, we describe the behavior of near the vanishing cycles of as .