{"title":"Soil-cement formation factor: methodological approach and relationship with unconfined compression strength","authors":"J. Vaillant, R. Cardoso","doi":"10.28927/sr.2022.072421","DOIUrl":null,"url":null,"abstract":"This study investigated the use of the Formation Factor of the material as an alternative way to estimate soil-cement strength involving no destructive tests. This factor is obtained from Archie’s Law and consists of the ratio of pore water electrical conductivity to saturated porous material electrical conductivity, being related to porosity by constant terms. In this study, the electrical conductivity of the pore solution was obtained from a soil-cement leaching test after curing, and the conductivity of the monolithic soil-cement, by applying continuous voltage between 12-35 V onto electrodes of 1 mm thick copper plates. The influence of cement content and dry density on the electrical properties and water absorption was studied and discussed for curing times of 7 and 28 days. The samples molded with higher dry densities and cement contents presented higher Formation Factor for Soil Cement and higher unconfined compression strength. The Formation Factor and the unconfined compression strength are linearly related. Due to the methodology adopted, the Formation Factor was predominantly influenced by the conductivity of the pore solution and was related to the open porosity by means of a power function. Therefore, the Archie’s Law can be applied to soil-cement. In this case, the cementation coefficient varies until 28 days of curing, tending to stabilize around 8 from that age onwards. The volumetric coefficient can be adopted as a constant with a value of 1012.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28927/sr.2022.072421","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the use of the Formation Factor of the material as an alternative way to estimate soil-cement strength involving no destructive tests. This factor is obtained from Archie’s Law and consists of the ratio of pore water electrical conductivity to saturated porous material electrical conductivity, being related to porosity by constant terms. In this study, the electrical conductivity of the pore solution was obtained from a soil-cement leaching test after curing, and the conductivity of the monolithic soil-cement, by applying continuous voltage between 12-35 V onto electrodes of 1 mm thick copper plates. The influence of cement content and dry density on the electrical properties and water absorption was studied and discussed for curing times of 7 and 28 days. The samples molded with higher dry densities and cement contents presented higher Formation Factor for Soil Cement and higher unconfined compression strength. The Formation Factor and the unconfined compression strength are linearly related. Due to the methodology adopted, the Formation Factor was predominantly influenced by the conductivity of the pore solution and was related to the open porosity by means of a power function. Therefore, the Archie’s Law can be applied to soil-cement. In this case, the cementation coefficient varies until 28 days of curing, tending to stabilize around 8 from that age onwards. The volumetric coefficient can be adopted as a constant with a value of 1012.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.